Fiducial Cut For Positive Hadrons in CLAS/E2 data at 4.4 GeV

R.Niyazov and L.B.Weinstein

Old Dominion University
Department of Physics

August 15, 2001

Abstract
The procedure of deriving the geometrical fiducial cut for positive hadrons at 4.4 GeV ($I_B=2250$ A) for E2 run data is discussed.

1 Introduction

The CEBAF Large Acceptance Spectrometer (CLAS) is designed to measure multi-particle final states[1]. It is based on six iron free superconducting coils that generate a toroidal magnetic field in between. Each of the six gaps between the coils is equipped with a set of drift chambers (DC)[2] and scintillator counters (SC)[3] from 10° to 145° in polar angle, Cerenkov counters (CC)[4] and electromagnetic calorimeters (EC)[5] from 10° to 45°. In electron scattering experiments with CLAS, the triggered event is accepted for physics analysis if the scattered electron and the other particles in event are identified. Due to the complicated readout structures (EC), (CC), detection and reconstruction efficiencies are not well understood in
the regions close to the magnet, or close to any dead channels (DC, SC, CC, EC). In order to minimize systematic uncertainties in the physics analysis it is important to accept events in the fiducial region of the detector, where efficiencies are understood. The fiducial cut for electrons (for CLAS/E2) is discussed in ref. [6]. We use the same data and the same method to derive fiducial cuts for positive hadrons (protons, pions), so we are going to follow the steps described in [6].

The Fiducial Cut Procedure is defined by three steps:
1. Applying cuts
2. Determining the flat acceptance regions in \(\phi \) space for small bins of \(\theta \) and momentum
3. Fitting the boundaries of the flat acceptance region as a function of \(\theta \) and \(\phi \)

Web-based documentation that contains description of the procedure, plots, including a complete set of histograms and routines is given in [7].

2 Selecting good events

We applied cuts that helps to make better fit:
1. Selecting events with an electron and a good positive hadron (good DC, SC status).
2. Cut on \(\chi^2 \) from DCPB bank

We cut out events with bad tracks (with \(\chi^2 > 13.2 \)). That allows us to keep 99% of the integral of DC \(\chi^2 \) distribution.

3. Cut on Energy transfer

We apply that cut to eliminate protons from quasi-free reactions. These protons are not uniformly distributed in \(\phi \) and could not be fit by the trapezoid method. The quasielastic peak results from the electron interacting with a single nucleon of mass \(m_N \) and knocking it out of the nucleus. The energy transfer for those events defined by:
\[\omega = \frac{Q^2}{2m_N} + \frac{\vec{q} \cdot \vec{p}}{m_N} \]

We cut out energy transfer in the range:

\[\frac{Q^2 - 2 \cdot q \cdot p_{\text{init}}}{2m_N} < \omega < \frac{Q^2 + 2 \cdot q \cdot p_{\text{init}}}{2m_N} ; \]

where \(p_{\text{init}} = 200 \text{ MeV}/c \) is the initial momentum of the struck nucleon. The 6 sectors \((\theta, \phi)\) distribution plots with the quasielastic peak are shown in Fig.1.

3 Finding the Flat Acceptance Region

We divide the momentum range of the protons and pions in small bins and plot for each momentum bin a two-dimensional histogram of counts versus angles \((\theta \text{ and } \phi)\) for each sector. We use two momentum ranges \(0.2 < p < 0.6 \text{ GeV}/c\) (protons only) and \(0.6 < p < 4.4 \text{ GeV}/c\) (protons and pions). Table 1 shows the momentum binning for our plots. Fig.2 and Fig.3 show some typical \((\theta, \phi)\) plots at different momentum for 6 sectors using E2 run \(^3\text{He}\) data at 4.4 GeV.

<table>
<thead>
<tr>
<th>Momentum Range MeV/c</th>
<th>Hadrons</th>
<th>Bin Size MeV/C</th>
<th>Number of Bins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 600</td>
<td>(p)</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>600 – 1000</td>
<td>(p\pi)</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>1000 – 2000</td>
<td>(p\pi)</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>2000 – 4400</td>
<td>(p\pi)</td>
<td>200</td>
<td>12</td>
</tr>
</tbody>
</table>

The histograms in Fig.2 and Fig.3 exhibit a well contoured semicircular region, surrounded by a fuzzy region. We want to select this solid area of the histogram, which is the flat acceptance region and discard the blurred area surrounding it. For
this, we will fit its contour with a function $\Phi(\theta, p)$ for every sector. To define the flat area we slice the two-dimensional plots in theta bins of 2° at 11° < θ < 45° (Forward region) and 2° - 10° at 45° < θ < 140° (Backward region). We fit each sliced histogram with a trapezoid + background function, defined by:

$$
\begin{align*}
 y &= \left\{ \begin{array}{ll}
 p0, & \text{if } x < p2 - p1; \\
 (p6 - p0) \cdot (x - p2 + p1)/p1 + p0, & \text{if } p2 - p1 < x < p2; \\
 p6, & \text{if } p2 < x < p3; \\
 (p6 - p5) \cdot (p3 + p4 - x)/p4 + p5, & \text{if } p3 < x < p3 + p4; \\
 p5, & \text{if } x < p3 + p4.
 \end{array} \right.
\end{align*}
$$

Each parameter is described in Fig.4. Some typical trapezoids (fitted θ slices) are shown in Fig.5 and Fig.6. The plateau of the trapezoid (parameters $p2, p3$) defines our “flat” acceptance region. The automatic fitting procedure gives us reliable results in over 90% of the fits. Some of the “bad” θ slices are shown in Fig.7. Bad fits are “fixed” manually by increasing the error bar of the resulting parameters.

The coordinates of the edges of the trapezoid plateau for each momentum bin and sector are written to a file and fitted with a function $\phi = \Phi(\theta, p)$ for every momentum bin and sector. The procedure is completely automatic. We use the CERN two-dimensional Minuit fit routine for fitting non-equidistant data points. An example of that fitting function is given in [8].

We chose two different functions to fit the Forward and Backward regions and also we fit separately 2 momentum regions using the range of momenta $0.2 < p < 0.6$ GeV/c and $0.6 < p < 4.4$ GeV/C.

For the Forward region we used a hyperbolic function for the theta dependence and a $1/p$ function for the momentum dependence:

For $\phi < 0$: \quad $\Phi(\theta, p) = a \cdot (c - \theta)/(\theta - c + (b/a))$

For $\phi > 0$: \quad $\Phi(\theta, p) = a' \cdot (\theta - c')/(\theta - c' + (b'/a'))$
where,
\[a = a_0 + a_1 / p \]
\[b = b_0 + b_1 / p \]
\[c = c_0 + c_1 / p \]
and similarly for \(d', b' \) and \(c' \).

To avoid discontinuity at \(\phi = 0 \) we introduce \(\theta_{\text{min}} \) variable. We cut out events with \(\theta < \theta_{\text{min}} \). For \(0.2 < p < 0.6 \text{ GeV}/c \)
\(\theta_{\text{min}} = 20.6 - 11.4 \cdot p \). For \(0.6 < p < 1.5 \text{ GeV}/c \) \(\theta_{\text{min}} \) determined
visually for Sectors 1,4,5 and 6.

We divided the Backward region into two regions BackwardA
\((45^\circ < \theta < 60^\circ) \) and BackwardB \((60^\circ < \theta < 140^\circ) \). For
the BackwardA region we used a quadratic function and for
the BackwardB region we used a constant \((60^\circ < \theta < \theta_{\text{flat}}) \)
+ straight line \((\theta_{\text{flat}} < \theta < \theta_{\text{max}}) \) (see Fig. 8) with a \(1/p \) function
for the momentum dependence:

For \(45^\circ < \theta < 60^\circ : \)
\[\phi < 0 : \quad \Phi(\theta, p) = (d + e \cdot \theta + f \cdot \theta^2) \]
\[\phi > 0 : \quad \Phi(\theta, p) = -(d' + e' \cdot \theta + f' \cdot \theta^2) \]
where,
\[d = d_0 + d_1 / p \]
\[e = e_0 + e_1 / p \]
\[f = f_0 + f_1 / p \]
and similarly for \(d', e' \) and \(f' \).

For \(60^\circ < \theta < \theta_{\text{flat}} : \)
\[\Phi(\theta, p) = \Phi(60^\circ, p) \]
(no free parameters)

For \(\theta_{\text{flat}} < \theta < \theta_{\text{max}} : \)
\[\Phi(\theta, p) = (140^\circ - \theta) \cdot (\Phi(60^\circ, p) - \phi_{\text{edge}}) / (140^\circ - \theta_{\text{flat}}) + \theta_{\text{flat}} \]
where, \(\theta_{\text{flat}} \) and \(\phi_{\text{edge}} \) are determined from fitting and \(\theta_{\text{max}} \) is
determined visually from \((\theta, \phi) \) distributions and parameterized
using a linear function in p.

$$\theta_{flat} = g_0 + g_1/p;$$

$$\phi_{edge} = h_0 + h_1/p;$$

$$\theta_{max} = i_0 + i_1 \cdot p$$

BackwardB region parameters θ_{flat}, ϕ_{edge} and θ_{max} are shown in Fig.8. These fits were necessary due to the lack of the data in the BackwardB region. For $p > 0.6$ GeV/c the θ_{flat}, ϕ_{edge} and θ_{max} at $p = 0.575$ GeV/c were used (last momentum bin of $p < 0.6$ GeV/c region). To avoid discontinuity at $\theta = 45^\circ$ we fit the BackwardA region θ range starting from $\theta = 30^\circ$ instead of $\theta = 45^\circ$. Also, we replace the $\Phi(40^\circ, p)$ edge points with values defined from the Forward region fiducial function with error=0.05. That forced the BackwardA region curves to start from the end point of the Forward region curves.

The list of fit parameters is given in Table 2.

Table 2: List of the fit parameters

<table>
<thead>
<tr>
<th>P[GeV/c]</th>
<th>ϕ</th>
<th>Forward $\theta < 45^\circ$</th>
<th>BackwardA $45^\circ < \theta < 60^\circ$</th>
<th>BackwardB $60^\circ < \theta < 140^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p < 0.6$</td>
<td>$\phi < 0$</td>
<td>$a_0, a_1, b_0, b_1, c_0, c_1$</td>
<td>$d_0, d_1, e_0, e_1, f_0, f_1$</td>
<td>$g_0, g_1, h_0, h_1, i_0, i_1$</td>
</tr>
<tr>
<td>$p > 0.6$</td>
<td>$\phi > 0$</td>
<td>$a_0', a_1', b_0', b_1', c_0', c_1'$</td>
<td>d_0', d_1', e_0', e_1'</td>
<td>$g_0', g_1', h_0', h_1', i_0', i_1'$</td>
</tr>
</tbody>
</table>

Some typical plots of 2D fits of the data points with corresponding $\Phi(\theta, p)$ function for Forward and Backward regions are shown in Fig.9 and Fig.10, respectively. The fitting procedure gives us the final set of parameters, that is included to the PFiducialCut subroutine of E2AnaTool package. Fig.11 shows the overall result of the fiducial cut as made by using the derived PFiducialCut function for 4.4 GeV data.
4 Summary

We determined the fiducial region for positive hadrons by the following techniques: We eliminated events with bad tracks and events that generate quasielastic peaks. We split the angle-momentum range into small bins and found the contour of the regions of CLAS where acceptance is flat. We get from this a set of curves. What is inside the contour passes as OK, what is out is discarded. We fit the parameters that defines flat acceptance and insert them to \textbf{PFiducialCut} (\textit{Pr3 Vect}) subroutine together with the functions that define the fiducial cut.

5 Acknowledgments

We would like to thank Bin Zhang (MIT) for discussions and work he has done to obtain fiducial cuts for positive hadrons at 2.2 Gev [9]. Also we want to thank Dan Protopopescu (UNH) for nice description of fiducial cut procedure [6] for electrons at 4.4 GeV.
References

[5] L.C. Smith et al., The CLAS forward electromagnetic calorimeter, Accepted for publication in Nucl.Instr. and Meth.

Figure 1: Plots of (θ, ϕ) distribution with quasielastic peak. The peak is at $\theta = 50^\circ$ at proton momentum ($1200 < p < 1300$ MeV/c). The 6 plots are for the 6 sectors. Vertical axis is defined by ϕ, horizontal axis is defined by θ.
Figure 2: Some typical plots of (θ, ϕ) distribution at $250 < p < 300$ MeV/c for all 6 sectors. Red line on the top of the distribution is defined by fiducial cut function. Vertical axis is defined by ϕ, horizontal axis is defined by θ.
Figure 3: Plots of (θ, ϕ) distribution at $750 < p < 800$ MeV/c for all 6 sectors.
Figure 4: Parameters used for fitting trapezoid+background function.
Figure 5: Trapezoid+background function fitted on histogram counts vs φ angle. The top defines our “flat” region. These are for Sector 4, 250< p <300 MeV/c.
Figure 6: Trapezoid+background function fitted on histogram counts vs ϕ angle. These are for Sector 4, $750 < p < 800$ MeV/c.
Figure 7: Typical bad θ slice. These are for Sector 2, $900 < p < 950$ MeV/c. Vertical axis is defined by counts, horizontal axis is defined by ϕ.

15
Figure 8: Backward region parameters θ_{flat}, ϕ_{edge} and θ_{max}.
Figure 9: Forward region $\Phi(\theta, p)$ fit at $750 < p < 800$ MeV/c. 6 graphs are for 6 sectors. Vertical axis is defined by ϕ, horizontal axis is defined by θ.

17
Figure 10: Backward region $\Phi(\theta, p)$ fit at $300 < p < 350$ MeV/c. 6 graphs are for 6 sectors. Vertical axis is defined by ϕ, horizontal axis is defined by θ.
Figure 11: Plots illustrating the result of the cut at $750 < p < 800$ MeV/c for all 6 sectors. Vertical axis is defined by ϕ, horizontal axis is defined by θ.