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Abstract

We present a comparison of two different acceptance models for the CLAS detector at
Jefferson Laboratory. This note is focused on the reactione+p — '+ KT +A, A - p+7~,
however, the conclusions to be drawn from this acceptance function comparison are quite
general and should be illustrative for all analyses with multiple charged particles in the final
state. Two models were compared, the first is a standard Monte Carlo simulation with the
GSIM software package, and the second is a geometrical model based on defining fiducial
regions of the CLAS in which the geometrical acceptance for individual charged particles
can be assumed to be large and uniform. The two models agree in the general trends they
show, but the GSIM model exhibits a stronger dependence on the kinematic variables and
is sensitive to several subtle but important dependencies on the kinematic variables that
the geometric model misses. Ultimately the acceptance function that can be employed is
intimately connected with the analysis procedure for a given experiment.



1 Introduction

During the analysis of experiment E99-006 [1, 2|, two different methods have been used to
determine the CLAS acceptance function. The first technique, referred to as the Geometrical
Model, is based on defining a fiducial volume of the CLAS where the detector geometrical
acceptance for individual charged particles is large and uniform. With this volume defined,
the geometric acceptance of CLAS can be determined on an event-by-event basis even for
final states containing multiple charged particles. The second technique to determine the
acceptance of CLAS is through the more standard GEANT-based GSIM Monte Carlo ap-
proach.

This CLAS-note is designed to compare the results of the two approaches, highlighting
the similarities and differences between the two. Clearly the GSIM calculation is expected
to represent the superior approach based on its detailed modeling of the CLAS, the fact
that the simulation and event reconstruction codes are identical, and due to the inclusion of
important effects such as radiation, track reconstruction efficiencies, bad element knock out,
and detector efficiency.

From a general viewpoint, the GSIM simulation and the Geometrical Model provide con-
sistent results when analysis methods are used that are insensitive to the details of the
acceptance function, such as in the measurement of cross section asymmetries. However,
for other analyses, such as measurement of a cross section, the Geometrical Model misses
several more subtle but important dependencies of the acceptance function on the kinematic
variables.

This note will focus specifically on comparisons of the acceptance calculations for the
specific final state of interest in E99-006, namely e +p — ¢ + KT+ A, A — p+ 7.
However, the conclusions to be drawn from this comparison are quite general and should be
illustrative for all analyses with multiple charged particles in the final state.

The main reason for investigating alternative approaches to GSIM for calculation of the
acceptance function of CLAS is the nearly prohibitive amount of CPU time required for
the task. The acceptance tables must be generated in the required number of kinematic
variables, with sufficiently small bin sizes and acceptable statistical errors for each different
beam energy / torus field setting of the data set. For the final state of E99-006 where three
charged particles are detected, namely the ¢/, Kt and p (7~ missing), the typical acceptance
is on the order of 5%. To fully define the kinematics at a given beam energy for each event,
we define the acceptance in terms of the following six quantities:

Q?: Four-momentum transfer squared (¢ = p. — per, Q* = —¢?).

W: Invariant energy in the resonance center-of-mass frame.

6%": Polar angle of the kaon in the resonance center-of-mass frame.

o%": Relative angle between the electron scattering plane and the K — A scattering plane.
HI?F : Polar angle of the A decay proton relative to the spin-quantization axis in the hyperon

rest frame.

¢pF': Azimuthal angle of the A decay proton in the hyperon rest frame.



For this study we employed the 4.247 GeV /2250 A data set from the elc running period.
The binning employed is given in Table 1. With our six variables, even with the very coarse
binning employed, we require roughly 100-200M Monte Carlo events for each beam/torus
setting to achieve statistical uncertainties on our acceptance calculation at the level of <20%
in each of our 52500 bins.

Variable Range Npins
Q? 0.9 — 2.5 (GeV/e)? | 7
w 1.6 — 2.5 GeV 5

cos 05" -1.0—1.0 6
em —T =T 10

cos O —-1.0 = 1.0 5

¢ﬁF —-T =T 5

Table 1: Number of bins chosen in each of our kinematic variables for the acceptance function
comparison.

For the elc data set of 1999, there are six different combinations of beam energy / torus
current that are being analyzed. Our experience with using the CPU farms at Jefferson
Laboratory and Ohio University indicate the we can generate and reconstruct (i.e. cook)
roughly 2-3M Monte Carlo events per day. Thus the number of days to generate the very
coarse acceptance tables, fully within our statistical uncertainty limits, would amount to
roughly 1-2 years! Clearly seeking out a practical alternative can drastically reduce the
analysis period.

2 Acceptance Calculations

2.1 Geometrical Model

When studying acceptance corrections, it is convenient to divide the problem between the
effects related to the geometrical acceptance and those related to the efficiency of the detector
and the offline analysis (e.g. track reconstruction efficiencies). The geometrical acceptance
issue can be solved in a straightforward manner because fiducial cuts have been used in the
analysis. These fiducial cuts, defined separately for both the electron and hadrons, determine
a precise geometrical region of the detector where events are accepted. These fiducial cuts
are specifically designed to eliminate the low efficiency areas of the CLLAS acceptance near
the coils of the torus. A plot of these fiducial cuts in terms of laboratory angles is shown in
Fig. 1. The functional form of the employed fiducial cuts is included in the Appendix.

The geometrical acceptance within the fiducial region can be calculated and used to apply
an acceptance correction to the data on an event-by-event basis. This procedure was initially
developed by Raffaella DeVita for the analysis of the EG1 double-spin asymmetries [3]. Of
course, the acceptance function determination is more complicated for the present analysis
due to the nature of the three-body final state.

The Geometrical Model represents an analytic approach to determining the acceptance
for our three-body final state. The final acceptance determined for the event represents
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Figure 1: Plot of laboratory ¢ vs. 6 (deg) showing the angular distribution of detected electrons
and hadrons before (black) and after (red) the fiducial cuts have been applied. The picture can
only give a rough impression of the cuts as they are momentum dependent.

the convolution between the three functions that define the fiducial regions separately for
the final state electron, kaon, and proton [2]. Fig. 2 illustrates the procedure for a typical
event. This figure schematically shows the six CLAS sectors as the solid outlines. The dashed
outlines represent the fiducial cuts that are used to define the precise geometrical acceptance.
This definition fixes the ¢ extent of each sector as a function or # for both electrons and
hadrons. In the analytical calculation, the measured event in CLAS determines the specific
values for the laboratory angles 0., Ok, 0,, A¢.x, and A¢yk.

The first step of the calculation is to allow the electron to have all values of ¢ within the
defined electron fiducial cuts at the measured value of 6, for one sector. This is shown as the
shaded region between points A and B in Fig. 2. From the measured value of A¢.x, the ¢
range of the associated kaon is therefore fixed between the limits of C and D. The accepted
range of ¢ for an event with this kinematics is then the shaded region between points C
and D, or that ¢ range within the fiducial region for positively charged hadrons. For each
portion of this ¢ range that is within the fiducial volume of CLAS, the range of ¢ for the
associated decay proton is studied. This range is fixed by the value of A¢,x for the event
and must lie between the limits of E and F. The shaded region between points E and F is
called d¢p3. This calculation is repeated for the electron in each of the six CLAS sectors. The
geometrical acceptance assigned to this event, with its given kinematics, is then given by:

6
> 06

GACC ==L 1

2m (1)

In this procedure, we explicitly check whether any of the final state particles fall onto a

known bad scintillation counter as we rotate through ¢. Azimuthal angle ranges where this

occurs are not included within the d¢3 sum.
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Figure 2: Schematic picture of CLAS to illustrate how the geometrical acceptance is calculated
for each event.

Our Geometrical Model also includes a factor to account for the kaons that are lost due
to in-flight decay. The calculated acceptance for the event is multiplied by the kaon survival
probability K:

(2)

Here Ly is the kaon path length from the target to the outer scintillation counters, mg is
the kaon mass, px is the kaon momentum, and 7k is the proper lifetime of the kaon (c7x =
3.713 m [4]). This survival probability is shown in Fig. 3 as a function of kaon laboratory
polar angle.
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Figure 3: The K™ survival probability in CLAS from the target to the scintillation counters as a
function of the kaon laboratory scattering angle (deg).



Finally, the expression for acceptance also includes a factor for the A decay branching
ratio to the pr~ final state of 0.64. Thus the acceptance for each event in our Geometrical
Model is given by:

ACC = GACC - 0.64 - K, (3)

The weighting factor assigned to the event histogram is then simply 1/ACC. The average
three-body acceptance is on the order of 5%. The distribution of the weights for a typical
data set at a beam energy of 4.247 GeV and a torus current of 2250 A is shown in Fig. 4.
The events that have a weight of zero assigned to them include at least one particle that
does not lie within the defined fiducial volume.
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Figure 4: Distribution of the weights from the geometric acceptance model for Ey=4.247 GeV and
I;=2250 A.

The relative simplicity of this approach is countered in some respects by the fact that
several important details of the CLAS response that affect the acceptance function are not
explicitly considered. These effects include:

e Bad or missing drift chamber (DC) channels

Missing electromagnetic calorimeter (EC) channels

Cerenkov counter efficiency map

Track reconstruction efficiency

Track correlation effects

Radiative effects for electrons and hadrons

e Bin migration



2.2 GSIM Monte Carlo Model

For the GSIM model the standard GEANT-based software was used with slight modifica-
tions. The events were generated with RadGen [5], setting the beam energy to 4.247 GeV
and the torus / mini-torus current to 2250 / 6000 A. Two different models for the cross sec-
tion were employed: a phase-space distribution and a model devised by T. Mart [6]. Ideally
one would like to use a cross section model that is very close to the real cross section to
be less sensitive to the effects of bin migration. But the more realistic cross section model
produced only very few events in some kinematic regions. To bring the statistical error of the
acceptance function in these regions to an acceptable value with a moderate amount of CPU
time, it was necessary to include events from the phase-space generator to better cover these
kinematic regions. The events were then simulated with GSIM and additional smearing was
introduced with the GSIM post-processor gpp, which also introduced the signatures of bad
scintillator paddles and dead DC wires. The resulting Monte Carlo data was processed with
the same software as was used for the cooking of the original elc data (alc version 1-9).
The program to convert the resulting .bos-file output into Ntuples (nt10maker) had to be
modified to extract the simulated 4-momenta for the decay products of the A hyperon. The
Ntuples were then processed with nearly the same analysis code that was used to analyze
the original data.

Several changes had to be introduced into the analysis code because GSIM does not yet
fully model all parts of the detector response. The first modification was to include the
Cerenkov counter efficiency function devised by Alex Vlassov [7]. Each event was assigned
an efficiency according to the position of the electron track on the face of the Cerenkov
counter. Events were randomly removed, with the chance of removal being the inverse of the
efficiency assigned to the event. Additionally, the RF-timing information that is provided
by GSIM does not match the real signal, so that we were not able to calculate the mass of
the particles from the timing information, as it is done for real data. Instead the hadron
mass values from the SEB banks [8] were used.

3 Acceptance Function Comparison

To compare the two acceptance calculations, we applied both models to data that was
taken at Ey=4.247 GeV, [;=2250 A, and I,,;=6000 A. Fig. 5 shows the acceptance functions
according to the two models, integrated over all but one of our kinematic variables. These
plots highlight the general trends of the acceptance function, but the integration hides many
details that can only be seen if the acceptance is studied as a function of more than one
variable. Fig. 6 shows the acceptance as a function of W and the angle coordinates.

Firstly it has to be noted that the acceptance calculated with the Geometrical Model is,
in general, about three times as high as that resulting from GSIM. This is due to several
contributions that have been omitted in the Geometrical Model for simplicity. The main
factors include the Cerenkov counter efficiency, the reconstruction efficiency, and radiative
effects.

The effect of the Cerenkov counter efficiency was estimated to reduce the acceptance by a
factor of about 1.5 by looking at Monte Carlo data with and without the Cerenkov counter
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Figure 5: The acceptance integrated over all but one variable for the Geometrical Model (upper
plots) and the GSIM model (lower plots) applied here to data with E,=4.247 GeV, I;=2250 A, and
1,,,+=6000 A.
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efficiency correction turned on. The reconstruction efficiency includes several different effects
that all lower the number of events that are successfully reconstructed by the analysis pro-
gram. These include events that cannot be reconstructed due to missing EC channels and
DC wires. Although the inefficiency for single tracks in a sector is only at the few percent
level (~4%, including dead EC and DC channels), the analysis code has a significantly lower
chance of correctly reconstructing an event if two of the tracks are contained within a single
sector and are relatively close to each other (see [9]). In our data sample about one quarter
of the kaons and decay protons are detected in the same sector, while the electron and one of
the hadrons (kaon or decay proton) occupy the same sector only in a few percent of all cases
(see Fig. 7). For the hadron momentum differences involved in our data, the reconstruction
efficiency is ~80-90% when both hadrons lie in the same sector, implying a total loss of
acceptance of a ~4%.
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Figure 7: Number distributions of electron sector vs. proton sector (left) and proton sector vs.
kaon sector (right) showing where the final state particles were reconstructed in a representative
data sample. The plot for the kaon/electron correlation (not shown here) is very similar to the
proton/electron plot.

The radiative effects have two main consequences for the acceptance. First, events that
contain a Bremsstrahlung photon tend to be reconstructed at a higher W than they really
had (see Fig. 8). Second, radiative effects will, in general, induce errors in the missing-mass
calculation, causing the so-called “radiative tails” in the missing-mass distribution. The cuts
on the missing mass that have been introduced into the analysis code to suppress background
will also remove many events that have undergone radiation. Turning the radiative effects in
the GSIM model on and off lets one estimate this general loss of events (and hence reduction
in acceptance) to be roughly 30%. This contributes further to the large discrepancy in
average acceptance between the two models.

Further the bin migration has to be considered. The Monte Carlo model accounts for the
events that are produced in the kinematic region under investigation but are reconstructed
outside of it for various reasons. The Geometrical Model can not correct for these losses, but
it turns out that the loss due to bin migration is less than 1% and thus plays a negligible
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Figure 8: W and Q? dependence of the radiative correction factors for E,=4.247 GeV (blue/upper
value) and Ep=2.567 GeV (red/lower value). The correction factor shows what percentage of the
events in each bin would occupy this bin if radiation did nor occur. This graph was created by
Gabriel Niculescu for the analysis of experiment E93-030 [10].

role compared to the other factors for the average acceptance. Taking all these effects into
account, the average acceptance for the two models still differs by ~25%. The remaining
difference is discussed in Section 4.

The second general difference between the two acceptance models is that the GSIM results
show a stronger dependence on the kinematic variables than the Geometrical Model does.
When one compares the two models variable by variable, one can first see that the Q?
dependence of the GSIM acceptance is quite strong, while the Geometrical Model is relatively
flat in this variable. This effect arises due to the Cerenkov counter efficiency that depends
strongly on the polar scattering angle of the electron (see [7]). This effect can be seen in
Fig. 9 which demonstrates that Q? is strongly correlated with 6,. The Cerenkov counter has
a region of low efficiency at small angles (see Fig. 10). Therefore, including the Cerenkov
counter efficiency in the Monte Carlo model will lower the acceptance for small electron polar
angles and thus for low Q2. One could counter this drawback of the Geometrical Model by
applying fiducial cuts that allow electrons only within the region of high Cerenkov counter
efficiency, but the enormous loss of statistics and kinematic coverage makes this impractical.
The radiative corrections on the other hand do not depend strongly on @? (see Fig. 8), and
thus cannot be responsible for the difference in the Q? dependence.

The distribution of the acceptance in W seems to be in reasonable agreement between the
two models. Except for the bin with the most forward angle, the distributions in cos 8% are
likewise comparable. The lowering of the acceptance with increasing 6%" can be explained
in the following way. A large 8%" corresponds to a large angle of the kaon in the laboratory
frame. The kaons with large angle typically have lower momenta, so that some of them decay

11
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Figure 9: The correlation between the electron laboratory polar angle 6, (deg) and Q? ((GeV/c)?)
at 4.247 GeV /2250 A.

30
120
20
100
10
80
60
-10
40
-20 20
—30 0
10 15 20 25 30 35 40 45 50

pvs ¥

o

Figure 10: The distribution of the scattered electrons summed over all six sectors in terms of
laboratory ¢, vs. 6. (deg) at 4.247 GeV /2250 A .
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before they can pass through all three drift chamber regions of CLAS and reach the outer
scintillation counters. The fall off in the GSIM model is steeper as this model also takes
into account that low momentum kaons can curl up in the magnetic field and thus escape
detection.

For the dependence of the acceptance on the angle between the hadron and the electron
planes, ¢%", one would, on first thought, expect a six-fold symmetry caused by the six coils
of CLAS. This is somewhat washed out by the low number of bins. The cause of the strong
W dependence of the acceptance in ¢%" is the strong correlation between W and the opening
angle between the kaon and the decay proton. This angle distribution, convoluted with the
acceptance holes in CLAS due to the coils, accounts for the acceptance that can be seen in
Fig. 6. The difference in amplitude between the variations in the acceptance with ¢%"* in
the two models can partly be traced back to the Cerenkov counter efficiency. The Cerenkov
counter has a region of low efficiency near the coils (see Fig. 10) that causes the two peaks in
the ¢%* acceptance to be more pronounced. This effect can be mimicked in the Geometrical
Model by introducing very narrow fiducial cuts that simulate the low Cerenkov counter
efficiency near the coils. As these narrow cuts cause a loss of data unacceptable from a
statistical point of view, they were only applied for test purposes. A further contribution to
the discrepancies lies in inadequacies of the cross section models that were used to generate
the Monte Carlo data. Applying the Geometrical Model to a sample of the Monte Carlo
data shows differences in the ¢%" acceptance for the two different cross section models that
were used (phase space distribution and code by T. Mart [6]). Ideally one would like to only
use the more realistic cross section model to produce a more accurate result, but this cross
section model tends to populate some kinematic regions only very sparsely; we therefore
had to rely on a phase-space distribution to achieve sufficient statistical accuracy in these
regions, thus introducing further uncertainties.
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Figure 11: Plot of cos 05 vs. cos 67 for W between 2.14 GeV and 2.32 GeV at 4.247 GeV /2250 A.

The dependence of the acceptance as a function of the decay proton angles ﬁfF and
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quF is difficult to interpret, mainly because there is no intuitive connection between these
variables and the track positions in the lab frame, although the two models agreement here.
The slightly higher acceptance for forward HfF angles can be explained in terms of the weak
correlation between 9 and 67" (see Fig. 11). The correlation varies with W, which explains
why the effect of this correlation is washed out when integrated over W (compare Fig. 5 and
Fig. 6). The acceptance in the azimuthal decay proton angle qﬁfF is comparatively flat in
both models. In the GSIM model the acceptance has been integrated over gbe , so that one
should expect this part of the acceptance to be rather flat.

4 Event Weight Comparison

To check whether the agreement between the two models is not just superficial, the weights
assigned to the real data events can be compared event for event (see Fig. 12). The result
of this study is that, in general, both models agree reasonably well, especially where the ac-
ceptance is larger. However for larger weights (lower acceptances) the two begin to disagree.
One reason here could be that for the low acceptance bins, the statistical error for the accep-
tance function can be quite large (see Fig 13). However, the spread in the weight differences
between the Geometrical Model and the GSIM calculation are more strongly attributable
to kinematic-dependent efficiencies that are not included in the Geometrical Model. This
arises as events with similar weights can have very different kinematics.
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Figure 12: Comparison of the weights assigned by the different acceptance models to events of the
real data at 4.247 GeV /2250 A.

Additional discrepancies can be expected between the two acceptance calculation ap-
proaches due to inadequacies of the Geometrical Model, especially near the edges of the
kinematic and geometrical acceptance of CLLAS. Beyond the effects explicitly considered in
Section 2.1 in detail, any other loss mechanisms, either due to reconstruction algorithms,
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detector response, detector solid angle, etc., only serve to reduce the GSIM calculated accep-
tance relative to the Geometrical Model. These effects most likely address the unaccounted
for 25% discrepancy alluded to in Section 3.
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Figure 13: Relative statistical error of the GSIM Monte Carlo acceptance sorted by weight.

5 Weaknesses Of The GSIM Model

The GSIM Monte Carlo method has to struggle with several problems that are not easily
overcome. When a realistic cross section is used to generate the initial events, there are
extremely few events in the region of low W and higher Q?. This forces one either to
generate enormous amounts of data or to include some fraction of events from a phase-space
distribution (which has been done here). The first option would in principle give more
accurate results (bin migration would have less influence on the results) but is impractical
from the standpoint of CPU time.

The fact that the generated Monte Carlo events are differently distributed than the real
data motivates a very close look at bin migration. As a complete migration matrix would
be much too large, one matrix for each kinematic variable was generated for our studies.
Bin migration was found to occur at the few percent level in all of our kinematic variables.
However, depending on the precision desired in the acceptance function, this could force
one to rely entirely on a realistic cross section model for the generation of the Monte Carlo
data. As the model we used tends to populate some kinematic regions only very sparsely,
one would have to invest large amounts of CPU time to gather enough statistics in the
disfavored kinematic regions. Additionally, it also proved impractical to produce a fully
differential acceptance table. In order to reduce the statistical uncertainty in the GSIM
acceptance function to acceptable levels (i.e. $20% for these studies), we opted to integrate
our acceptance function over one of our kinematic variables: quF . Only the integration over
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one of the kinematic variables made it possible to guarantee reasonable statistical errors in
the acceptance function, even in the sparsely populated regions of the kinematics.

A related problem is that the binning of our GSIM acceptance function is much coarser
than would be desirable. Especially for variables that strongly affect the acceptance like
¢%", the number of bins chosen in this analysis are the bare minimum. Unfortunately any
increase in the number of bins would further increase the amount of CPU time necessary to
guarantee an acceptable statistical accuracy.

One additional uncertainty comes from the calculation of the Cerenkov counter efficiency
(see [7]). Unfortunately there was not enough data to properly define the efficiency for some
peripheral parts of the counter. Most of the events that lie in these regions are eliminated
by the fiducial cuts. For the other events the efficiency was arbitrarily assumed to be zero.
This is presumably caused by the fact that there occur too few real events in these regions
to properly define the efficiency function. So one can expect that only a few events will
be weighted by an acceptance that has been influenced by the undefined Cerenkov counter
efficiency.

6 Conclusion

Two approaches for generating an acceptance function for CLAS have been compared, a Ge-
ometrical Model that is based on defining fiducial volumes and a standard GSIM simulation.
The GSIM model includes more details than the Geometrical Model and shows a stronger
dependence on the kinematic variables than the Geometrical Model. The major differences
between the two models can be explained in terms of the different level of detail included
in each model. In principle the GSIM simulation is preferable to the analytic approach, but
practically a Monte Carlo simulation of sufficient quality needs very large amounts of CPU
time.

Our studies show that the less work and CPU-intensive Geometrical Model still yields
acceptable results if the concerned analysis is not strongly sensitive to the acceptance function
(e.g. asymmetry measurements). In analyses sensitive to the acceptance function a full scale
GSIM Monte Carlo study is required.
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7 Appendix

For the electron the CLAS acceptance is determined mostly by the limits of the ¢, acceptance
in each sector. The ¢, limits are determined by the drop in collection efficiency of the
Cerenkov detector mirrors. Fiducial cuts in ¢, for electrons are empirically chosen to avoid
regions of very low efficiency. The expressions that determine the electron fiducial region for
each CLAS sector are given by:

5¢e - (bO Sin(e - emzn)xa T = a(peImax/I)b
emz’n = 01 + 02/[(pe + pO)Imax/I]-

Here I,,q,/I represents the ratio of the torus current settings relative to I = 3375 A. The
minimum scattering angle, 0,,;,, is a function of momentum for the inbending electrons. The
parameters #; and 6, employed for the electron fiducial cuts are contained in the Table 2.
This form for the electron fiducial cuts was inspired by that employed by Cole Smith for the
70 analysis [11].

H Ebeam/ltorus ‘ ¢0 ‘ 01 ‘ 02 ‘ Do (GQV/C) ‘ a ‘ b H
> 4.0 GeV/2250 A | 26.0° | 8.4° | 30.4° 0.287 0.05] 1.1
> 4.0 GeV/3375 A | 26.0° | 8.0° | 30.4° 0.420 0.05 | 1.2

Table 2: List of parameters employed in the analysis for the electron fiducial cuts.

For the charged hadrons in this analysis, K+ and p, the CLAS fiducial cuts are designed
to exclude regions of non-uniform acceptance from attenuation due to interactions with the
mini-torus coils, the torus cryostat, or from the edges of the drift chamber acceptance. These
regions have been assumed to be the same for both kaons and protons, and have the same
definition in all CLAS sectors. The expressions that define these fiducial cuts are symmetric
about the sector midplane and are given by:

5¢h = ¢OSln(9_9mzn)z
r = b(pplne/I)".

The parameters employed for the hadron fiducial cuts are contained in Table 3.

H Ebeam ‘ ¢0 ‘ Hmm ‘ a ‘ b H
| > 4.0 GeV | 26.0° [ 10.0° [ 0.15 | 0.25 |

Table 3: List of parameters employed in the analysis for the hadron fiducial cuts.
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