
CLAS-NOTE 2003-005
March 14, 2003

Momentum Corrections for E6

Alexei Klimenko and Sebastian Kuhn
Old Dominion University

1 Introduction

In this note, we describe a new method to correct particle momenta as mea-
sured by CLAS and reconstructed with RECSIS for electron runs. This
method was used to correct all measured particle momenta (electrons and
hadrons) for the Physics analysis of E6. However, it was also tested for EG1b
analysis and should be applicable in general for all CLAS analyses (maybe
with some modifications). Our goal was to develop a general, consistent and
realistic scheme which should allow us to simultaneously correct momenta
and polar angles of all final state particles.

It is well known that the particle momenta as reconstructed by RECSIS
(or A1c) show systematic deviations, as evidenced by shifted and broadened
W distributions for inclusive data and missing mass peaks for more exclusive
data. In inclusive data, the centroid for the W distribution of the elastic peak
is moved from is theoretical value, W = Mp = 0.9382 GeV and significantly
broader than expected from the intrinsic momentum resolution of CLAS.
A clear dependence of the shift on both φe and, to a lesser extent, θe is
observed (see Figs. 1 and 2). These systematic momentum deviations could
in principle arise from several sources:

• Misalignment of the drift chambers relative to their nominal positions,
inaccurate or out–of–date survey results

• Neglect to properly incorporate effects like wire sag, wire take-off posi-
tion on the “trumpet lips”, thermal and stress distortions of the drift
chambers, and other factors affecting wire position
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Figure 1: Relative difference ∆p/p between reconstructed electron momen-
tum and calculated momentum for elastic scattering off a proton (see Eq. 1)
plotted (on the x-axis) versus the azimuthal angle φ in the sector system
(on the y-axis) for all 6 sectors of CLAS. The data are for electron scatter-
ing angle θe = 18◦ and inbending torus polarity. A clear correlation of the
momentum deviation with φ is visible in nearly all sectors.
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Figure 2: Same as Fig. 1 but for data taken with outbending torus polarity.
The correlation of the momentum deviation with φ has the opposite sign to
that in Fig. 1, indicating a dependence on the sign of the magnetic field.
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• Insufficient or incorrect information in the reconstruction code on the
exact location of the wire feedthrough holes in the drift chamber end-
plates as actually drilled, especially for the very complicated compound
angles involved in the stereo superlayers

• Incomplete knowledge of the torus (or mini–torus) magnetic field dis-
tribution

The first three of these possible error sources could affect both the recon-
structed angle and the momentum, while the last item affects the momentum
only.

In the past, there have been several schemes tried and employed to at
least approximately correct for these errors. One widely used method first
proposed by Volker Burkert (used, for instance, for EG1a, see also CLAS
Note 2001-008) assumed that the angles are basically reconstructed correctly
and corrects the electron momenta for inclusive elastic events to agree with
their theoretical value,

E ′

elastic =
Ebeam

1 + 2Ebeam

Mp
sin2(θe/2)

(1)

Under the assumption that the momentum deviation is due to a some-
what incorrect map of the CLAS torus magnetic field, the correction is ap-
plied by multiplying the measured electron momenta with a factor which
is typically parametrized as a function of θe and φe. A drawback of this
method is that the correction function is somewhat ad–hoc and has to be
extrapolated into the inelastic region (corresponding to lower electron mo-
menta) where it is not constrained by data. There is also no obvious way to
extend the correction to other particles or other running conditions (torus
currents). Finally, the assumption that angles are reconstructed correctly
may be unjustified (see, e.g., CLAS Note 2002-008).

Other attempts have been made to address some of the possible mis-
alignment problems using straight track data and to improve the momentum
resolution by varying the magnetic field map for the torus magnet (there exist
now two different field maps, termed “old” and “new”, and most run groups
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use some mix of those two to optimize their resolution, e.g. 34% “old” and
66% “new”). There have also been several more sophisticated attempts to
correct both angles and momenta, both for electrons and other particles (see,
e.g., K.-J. Park’s web site at http://www.jlab.org/∼parkkj/index pre.html
and CLAS Note 2001-18). Most methods that we are aware of concentrate (or
at least start) with elastically scattered electrons and then make assumptions
about at least two parameters (e.g., the beam energy and the proton scatter-
ing angle are “known absolutely”) to determine very detailed corrections for
electron momenta and/or angles. Again, the results can not necessarily be
extended into the inelastic region and to other particles (which may receive
different ad–hoc corrections to improve missing mass distributions).

Our approach has been to make some basic assumptions about the form

of the necessary corrections, with a modest amount of free parameters (14 per
sector), and then attempt a simultaneous fit over a large, heterogeneous data
set (including elastic and inelastic events and several different particle types
and torus settings) to fix these parameters. The result is a uniform correction
algorithm for all momenta and all polar angles which should improve all
missing mass and W spectra. Our method is most similar to the one explained
in CLAS Note 2001-18, which is based on similar assumptions. However, our
method includes corrections to the polar angles as well as the momenta and
uses multi–particle final states in addition to elastic events.

2 Theoretical background

We assume that both momenta and polar angles are distorted by systematic
displacements of the drift chambers and by magnetic field deviations from the
field map used in the reconstruction code. In the following, we first discuss
the effects of drift chamber displacements on angle and momenta and then
add a correction due to field variations.

We found that the most pronounced improvement in reconstructed mo-
menta (including resolution in W ) can be achieved by parametrizing the drift
chamber dislocations with 8 fit parameters in each sector, which roughly
correlate to a displacement in z (along the beam) and x (away from the
beam axis) as well as a ”yaw” (phi-depend z-displacement) and a ”roll” (phi-
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dependent x-displacement) for each Region 2 and Region 3 chamber. (We
have to keep something fixed in this scheme, so we decided to leave Region
1 unchanged.) We do not correct the azimuthal (φ) angles, since they are
determined with larger intrinsic uncertainty and seem to have fewer problems
(e.g., the difference φe−φp for elastic events usually is centered on the correct
value of 180 degrees). They also affect reconstructed kinematical quantities
less in the case of E6.

The effect of these displacements on a given reconstructed track can be
written as a change ∆θ in the polar scattering angle and ∆p in the momen-
tum:

∆θ = (A + Bφ)
cos θ

cos φ
+ (C + Dφ) sin θ (2)

and

∆p

p
=

(

(E + Fφ)
cos θ

cosφ
+ (G + Hφ) sin θ

)

p

qBTorus

. (3)

Here, q is the particle charge in units of e, p the RECSIS reconstructed
momentum in GeV, and θ and φ = φe−φSector are the RECSIS reconstructed
polar and azimuthal angle (the latter measured in the sector relative coordi-
nate system where φ = 0 in the sector midplane). The quantity BTorus really
stands for the integral

∫

Btransd` along the path of the track, converted to
GV by multiplying with c = 0.29979 m/ns. The ratio qBTorus/p is propor-
tional to the amount of curvature of the track, which determines the effect
of a misalignment of the drift chambers. Using the CLAS CDR, we found a
simple parametrization of this integral as function of θ:

BTorus = 0.76
ITorus sin2 4θ

3375 θ/rad
for θ < π/8 and BTorus = 0.76

ITorus

3375 θ/rad
for θ ≥ π/8

(4)
which is good enough for this purpose - the overall normalization is unim-
portant since it will be absorbed in the definition of the parameters E −H.

Parameters A and E describe displacements of Region II and/or Re-
gion III drift chambers radially outward which affect mostly forward–going
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particles (hence the factor cos(θ)), while B and F can be interpreted as φ–
dependent radial displacements (a “roll” or rotation around the beam axis).
Similarly, C and G describe displacements along the beam axis (affecting
mostly particles at large scattering angles) and D and F correspond to a
”yaw” (a rotation around the radial direction). We found little improvement
in our fits (and considerably less constrained parameters) if we also included
a rotation around the wire direction (a ”pitch”), therefore, we didn’t include
parameters for this degree of freedom (nor for displacements in the direction
of the wires). While there is a one–to–one correspondence between the eight
parameters listed here and the assumed displacements and rotations of both
Region II and Region III drift chambers, the relationship is complicated and
not really essential as long as the parametrization of Eqs. 2 – 4 gives a good
overall fit.

In addition to the angle and momentum corrections due to drift cham-
ber displacements described above, there could be an additional shift in the
reconstructed momenta from differences between the magnetic field map en-
coded in the reconstruction software and the actual spatial distribution of
the CLAS torus magnetic field. This contribution is typically considered to
be the main (or only) effect in the “standard” electron momentum correc-
tion method pioneered by V. Burkert. It can be incorporated by adding
another function f(θ, φ) to Eq. 3 which should depend only weakly (if at all)
on the momentum itself. Through many trials and errors, we arrived at the
following parametrization:

f = (J cos(θ) + K sin(θ) + L sin(2θ)) + (M cos(θ) + N sin(θ) + O sin(2θ))φ
(5)

with another 6 parameters J −O. In principle, other functional forms could
be tried and might work better for other run groups. However, it is very
important to chose a function that is “well–behaved” over the full range of
angles θ, in our case from 10 degrees to 140 degrees, since our goal is to apply
the corrections equally to all particle tracks.

It is very important to note that the two parts of the momentum correc-
tion behave completely differently under reversal of charge or magnetic field
sign and have different dependence on particle momentum. The correction
for magnetic field uncertainties leads to a uniform correction factor f(θ, φ)
which should (in principle) be applied to all momenta (independent of par-
ticle charge and momentum or torus field strength and sign). In contrast,
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the correction due to drift chamber position uncertainties leads to a correc-
tion that changes sign with particle charge and torus field and is directly
proportional to particle momentum and inversely proportional to torus field
strength. Of course, if one uses only elastically scattered electrons and a
single torus field setting to determine the correction, one cannot distinguish
between these two contributions, since there is a complete correlation between
electron momentum and angle and therefore any momentum–dependence of
the correction can be absorbed into the θ–dependence of the function f(θ, φ)
(Eq. 5). However, by comparing the momentum deviations for opposite torus
fields (Figs. 1 and 2) one can see that there is a sizable part of the correction
that reverses sign with the torus field, in agreement with the form of the cor-
rection in Eq. 3. It is therefore important to use data samples containing both
positively and negatively charged particles, with a wide range in momenta at
any given scattering angle, covering a large part of the physical acceptance
of CLAS. It is also very beneficial to include data with both positive and
negative torus current in the fit, since this will very effectively decouple the
two parts of the momentum correction. While it is possible to get as good
(or even better) improvements in the resolution of the elastic peak by using
only corrections of the form Eq. 5, these corrections would have the wrong
behavior if extrapolated to lower momenta (inelastically scattered electrons),
positively charged particles and different torus fields.

Once the 14 parameters A − O have been determined for each sector,
we can correct the RECSIS reconstructed angle θ by adding ∆θ and the
RECSIS reconstructed momentum p by multiplying it with (1 + ∆p

p
). We

determine these parameters by first selecting samples of fully reconstructed
(exclusive) events where all final state particles are detected, and then ap-
plying four-momentum conservation to each of them to extract a ”goodness
of fit” variable like χ2 which we then optimize for all these events. The most
obvious candidate for such events are elastic p(e, e′p)with both proton and
electron detected. However, it is also important to use more complicated
events, with low momentum particles (protons and pions) covering a range
of angles. One could use fully reconstructed p(e, e′pπ+π−) events. For E6,
we included d(e, eppπ−) events since they most closely resemble the events of
interest for our analysis and since we have data on both proton and deuteron
targets. The goodness of fit is basically the squared difference between each
of the 4 components of the initial state four-vector (E, 0, 0, E) + (M, 0, 0, 0)
and the final state four-vector, e.g. (E ′,p′

el)+(Ep,pproton). We add the four
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squares together, each weighted by a reasonable estimate of the ”intrinsic”
resolution CLAS should have for them. (We assume 20 MeV resolution for
the energy and the z-component and 14 MeV resolution for the transverse
components of the momentum.)

3 Preliminaries

For any momentum correction scheme, it is important not to make things
worse by introducing an unwanted bias into the fit. Possible problems can
arise from several areas, but especially from incorrect beam energy, failure
to account for ionization (and possibly radiative) energy losses, and bias in
event sample selection. We discuss these “preliminaries” in a little bit more
detail below.

The actual energy of the electrons in the beam (or, more precisely, in
the center of the target) enters directly in the values of computed kine-
matic variables like W , Q2 and missing mass. For our momentum correction
fit, it also enters since one of the four 4-momentum conservation equations
contains the beam energy. If a wrong beam energy is assumed, one can
easily bias the fit which tries to “recenter” the kinematic variables at their
proper values. Unfortunately, most CLAS data are (at least initially) an-
alyzed with the default value of the beam energy which is stored in the
database. As best as we can tell, this value corresponds to the “set en-
ergy” of the accelerator, which in the past has been shown to deviate by as
much as 10-20 MeV from the “true” beam energy, especially at high energies
above 5 GeV (see CLAS Note 2002-008). One possible remedy is to check for
beam energy measurements done in one of the other Halls (especially Hall
A) during the time of the CLAS experiment (see, e.g., the table found at
http://hallaweb.jlab.org/equipment/beam/brittin/beam energy table.html )
and scale these energies using the Equation EB = EA(nB+0.056)/(nA+0.056)
where nA and nB are the number of passes for the two halls. Another method
is using elastic p(e, e′p) events directly to calculate the beam energy from the
measured proton and electron angles (without any need for measured mo-
menta) – see CLAS Note 2002-008. This method requires to first use tight
cuts to select truly elastic events (see below in the Section on “Event Selec-
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tion”). For each event passing these cuts, fill a histogram of

Ebeam = Mp

(

1

tan(θe/2) tan(θp)
− 1

)

. (6)

In the case of composite targets (for instance NH3 in EG1 or CH2 in E2)
it also helps to subtract the background from nitrogen or carbon from the
histogram. Then fit a Gaussian to the peak (restricting the fit range to
roughly 2 standard deviations in each direction) and extract the mean as
best estimate for the “true” beam energy. Ideally, one should run a first
iteration of our correction algorithm to correct the scattering angles θe and
θp before using them in this manner.

A second systematic bias comes from energy loss of outgoing particles
due to both ionization and radiation. While radiation losses affect mostly
electrons, ionization losses are important for low–momentum hadrons which
are supposed to be included in the fit to make it applicable to all kinematic
regions (e.g., from the reaction p(e, e′pπ+π−)). We found that one can ignore
radiative losses of the electron provided one uses a fairly narrow cut on the
missing energy of the events selected for the fit (see next Section). We chose
a missing energy cut of ±60 MeV. On the other hand, since RECSIS doesn’t
include energy loss effects in its reconstructed track parameters, one has to
add the most likely energy lost by a given particle to its reconstructed (and
corrected) energy before checking 4-momentum conservation at the vertex.
One can either use GSIM for these corrections, or (in our case) develop a
simple approximation of the energy loss as a function of scattering angle,
particle mass and momentum, based on fits to energy loss curves (see, e.g.,
the TRIUMF kinematic handbook). Our fit takes the form

Ekin(vertex) =

[

Eb
kin(track) +

mparticle

Mp

(

a1 +
a2

sin(θ)

)]1/b

. (7)

Here, Ekin =
√

m2 + p2 − m is the kinetic energy of the particle. The ex-
ponent b and the parameters a1 and a2 are determined by a fit to several
low–momentum proton tracks. This correction is applied in the following se-
quence: First, the track momentum as reconstructed by RECSIS is corrected
by our algorithm. Then, it is converted to kinetic energy Ekin(track) and the
kinetic energy at the vertex is calculated using Eq. 7. Finally, this kinetic
energy is converted back to the momentum at the vertex and the relative
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increase p(vertex)/p(track) − 1 is calculated. Once this relative increase in
the momentum has been determined, all momentum components have to be
scaled accordingly.

Finally, if the initial momenta are far away from their proper values (as
we found in the case of outbending electrons for E6), there may be an inherent
bias in the event selection (see below). Since we require a missing energy of
less than 60 MeV, a shift by about 20 MeV in reconstructed momenta could
yield a skewed distribution of “true” initial momenta, with roughly twice
more on one side of the peak than on the other. The best apparent solution
is to do the fit iteratively, by first determining a preliminary set of corrections,
then using these to select a “better” sample of events within cuts.

The remainder of this note describes how the optimum sets of parameters
A−O are determined for each sector. Once these parameters and the “true”
beam energy (see above) are given (6 times 14 = 84 parameters total), one
can simple apply Eqns. 2 – 5 to correct all reconstructed 4-momenta of all
particles in an event. If one is only interested in inclusive electrons, no further
corrections are needed. However, when studying multi-particle final states,
the energy loss correction should be applied as well (after the momentum
correction), at least for relatively slow hadrons.

4 Event selection

Our method relies on 4-momentum conservation which requires that all par-
ticles in the final state are detected. Furthermore, if at all possible, one
should only use proton and (possibly) deuteron target runs, since nuclear
targets yield uncertainties coming from Fermi momentum and binding.

We use fully reconstructed elastic events p(e, e′p) as our primary sample.
In addition, it is also important to use multi-particle final states if possible,
to cover lower hadron momenta and avoid the strong kinematic correlation
between angle and momentum for elastic events. We chose the reaction
d(e, e′ppπ−) for this purpose. Experiments that do not have a deuteron
target might use exclusive p(e, e′pπ−π+) events instead.
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Figure 3: Example for the distribution of missing 4-momenta of uncorrected
elastic events from RECSIS. The cuts applied to select the events for our fit
are indicated.

12



Secondly, it is also very advantageous to have available runs with both
positive (electron inbending) and negative (electron outbending) torus po-
larities. This allows a clean separation of the parameters in Eq. 3 (which
depends on the torus sign) and in Eq. 4 (which does not). In a “pinch”, it
is probably sufficient to have either outbending runs or multi-particle final
states in the event sample used for the fit. For the case of EG1b, we actu-
ally used only elastic events on NH3 to minimize the complications from the
nuclear background, but included inbending and outbending torus polarities.

For all events, we first apply the usual fiducial, vertex and electron
ID cuts. We use SEB particle ID to select protons and pions. We then
apply cuts on missing 4-momentum to exclude events where not all produced
particles were detected in CLAS. These cuts also serve to suppress nuclear
background (from target windows or, in the case of EG1, non-hydrogen target
components). We calculate the missing 4-momentum of each event and then
retain only events where |E(miss)| ≤ 0.06 GeV, |pz(miss)| ≤ 0.06 GeV,
|px(miss)| ≤ 0.05 GeV, and |py(miss)| ≤ 0.05 GeV, where z is the direction
along the beam and x and y perpendicular to the beam. The cut on E(miss)
also serves to remove events where the electron lost a large amount of energy
due to internal or external radiation (these events would otherwise skew
the momentum corrections). For elastic events, we also included a cut on
the difference between the angle φe of the electron and the angle φp of the
proton, requiring this difference to be 180◦ within ±1◦. Figure 3 shows an
example for the distribution of 4-momenta for uncorrected elastic events (E6,
5.76 GeV beam, inbending torus polarity). All momenta have been corrected
for energy loss (see previous Section).

As can be seen in Fig. 3, the initial momentum distributions are fairly
wide and not centered on zero. For this reason, we iterated our fit procedure
once, reselecting events within our cuts after applying the first round mo-
mentum corrections for the second round fit. This led to appreciably better
fits for the final results. We show the 4-momentum distributions after the
first iteration in Fig. 4.
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Figure 4: The distribution of missing 4-momenta of elastic events from REC-
SIS after the first iteration of our fit. The cuts applied to select the events
for our fit are indicated.
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5 Fit procedure and results

The code for reading in events and calculating all needed quantities is writ-
ten in C++ and based on ROOT. We use “MINUIT” to optimize all 84
parameters for our momentum and angle corrections. For each “trial” set
of parameters, we loop over all selected exclusive events (see previous Sec-
tion). For each event, we first apply the momentum corrections due to the
present parameter set, then add in the energy lost due to ionization for all
hadrons. We calculate all four components of the missing 4-momentum. We
add the squares of these components, normalized to a “reasonable” expected
resolution, to the overall χ2 for the fit:

∆χ2 =
E2(miss) + p2

z(miss)

(0.020 GeV)2
+

p2
x(miss) + p2

y(miss)

(0.014 GeV)2
. (8)

After looping over all events (inbending, outbending, elastic, multi–particle),
we add 84 more terms to the total χ2, one for each of the 84 parameters:

∆χ2 =
∑ parm2

σ2(parm)
. (9)

This “trick“ is used to limit the parameters to “reasonable ranges” and avoid
run–away solutions in some corner of parameter space. We chose a “reason-
able range” for most parameters of σ(parm) = 0.001. However, due to the
large φ–dependent correction necessary for the momentum (see Fig. 1), we
increased this range to σ(parm) = 0.01 for parameters F and H for each
sector (see Eq. 3).

Our final results for E6 yielded a χ2 of 6.2 per event (1.54 per degree
of freedom given the 4 components of the missing 4-momentum for each
event). This can be interpreted as a slightly (25%) larger resolution in the
four missing momentum components than assumed in Eq. 8. This final χ2 is
less than half of the initial one (before our first iteration).

Figures 5 – 6 show the comparison of initial and final resolution in W
for inclusive electrons, and the size of the angle and momentum corrections
versus scattering angle for electrons and protons, both for inbending (Fig. 5)
as well as outbending (Fig. 6) torus polarity. The corrections are typically
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Figure 5: W distribution for inclusive electron events and inbending torus,
both before (left top panel) and after (right top panel) momentum correc-
tions. The corrections applied to polar angles (in mrad, left side) and mo-
menta (∆p/p, right side) for all electrons (middle row) and protons (bottom
row) in our data sample are shown versus scattering angle.
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Figure 6: Same as Fig. 5 for outbending torus polarity. Note that the initial
W distribution in this case was very broad and far off the nominal centroid
of 0.938 GeV, requiring a second iteration of our event selection and fit.
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±2 mrad in angle for electrons and up to 5 mrad for protons. Momentum cor-
rections range up to 2% or more, but are typically smaller than 1%. Figure
7 shows the remaining (slight) φ–dependence of the relative energy deviation
for inbending elastic events (compare with Fig. 1). Clearly, a further refine-
ment of our method (e.g., adding additional parameters to both parts of the
momentum correction) might improve the resolution further, but the gains
would likely be marginal.

We also tested our corrections for two reactions that were not included
in the fit of our parameters, namely p(e, e′π+)n and p(e, e′p)X. The miss-
ing mass distribution for the first of these reactions is shown in Fig. 8 both
before (top) and after (bottom) momentum and angle corrections. A clear
improvement in the width of the neutron peak is seen (the centroid is about
3 MeV too high, probably due to radiative energy loss of the outgoing elec-
tron). Similarly, the missing mass distribution for the reaction p(e, e′p)X
as shown in Fig. 9 shows visible improvement in the region of small miss-
ing masses (around 0 GeV2) after momentum corrections (red histogram),
with less strength in the “unphysical region” MM 2 < 0 and a somewhat
more apparent separation of neutral pion and photon peaks. The higher
mass meson peaks (η and ω) also show slight improvements. Finally, we
applied our method to data from EG1b (5.x GeV inbending and outbending
runs) using only elastic NH3(e,e’p) events for the fit. Again, the resolution
in W improved dramatically, roughly equivalent with the results from the
“standard” momentum correction scheme.

In summary, our momentum correction method results in a clear im-
provement in momentum and missing mass resolution for different channels
and torus settings. While typical results from “ad–hoc” momentum correc-
tions can lead to even narrower distributions, they require a vastly larger
number of parameters or a bin-by-bin correction, and they have to be “fine-
tuned” for every specific reaction under consideration, without obvious (or
reliable) extrapolation into other kinematic regions, reactions or torus set-
tings. The advantage of our method is that it can be uniformly applied to
all particles and torus settings, with a very modest number of fit parameters
(14 per sector). While one could probably improve the momentum resolu-
tion further by adding more fit parameters or trying out different functional
forms, we feel that the resolution achieved so far is sufficient for the purpose
of E6 analysis. The actual C++ code and the final set of fit parameters are
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Figure 7: Relative difference between reconstructed electron momentum and
calculated momentum for elastic scattering off a proton (see Eq. 1) after

corrections versus the azimuthal angle φ in the sector system (on the y-axis)
for all 6 sectors of CLAS. The data are for electron scattering angle θe = 18◦

and inbending torus polarity.
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Figure 8: Distribution of missing mass in GeV from the reaction p(e, e′π+)X,
using data from E6 at 5.75 GeV and inbending torus polarity. The top panel
is without momentum corrections and the bottom panel after momentum
corrections.
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Figure 9: Distribution of squared missing mass in GeV2 from the reaction
p(e, ep)X, using data from E6 at 5.75 GeV and inbending torus polarity. We
applied a cut of W > 1.1 GeV to exclude elastic events. The black line shows
the distribution of missing mass before momentum corrections, and the red
line afterwards.
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listed in the Appendix.

6 Appendix

Below is a listing of the code segment (in C++) used to apply momentum
corrections.

// Definition of class members

class TE6Ana {

public:

// default constructor

TE6Ana();

// momentum correction function

TLorentzVector AngMomCor(TLorentzVector , Double_t , Double_t ,

Int_t, Double_t);

public:

private:

// momentum correction parametrs

Double_t par[6][16];

};

// Class constructor

TE6Ana::TE6Ana() {

// defining input file stream of YAMC parameters

fstream list;

list.open("momcor.dat", ios::in);

// Loading parameters from a file stream above

for(Int_t mmm=1;mmm<7;mmm++) {

for(Int_t mmmm=0;mmmm<16;mmmm++) {

list>>par[mmm-1][mmmm];

}

}

}

// Momentum corrections function
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//

// Input:

// V4In - uncorrected 4-vector of the particle

// mass - mass of the particle

// q - charge of the particle (+1. or -1.)

// sector - DC sector

// torus - direction of the torus current (+1. or -1)

//

// Output:

// V4Out - corrected 4-vector of the particle

TLorentzVector TE6Ana::AngMomCor(TLorentzVector V4In, Double_t mass, Double_t q,

Int_t sector, Double_t torus) {

// declaration of used variables

TLorentzVector V4Out(0.,0.,0.,0);

Double_t phi=0.,theta=0.,dtheta=0.,factor=0.,dmom=0.,p_cor=0.,term=0.,xi=0.;

// angle conversion factor

Float_t rad2deg = 180./TMath::Pi();

Float_t deg2rad = TMath::Pi()/180.;

phi=V4In.Phi()*rad2deg;

// transforming phi: [-30,270] -> [-30,30]

if(phi<-30.) phi=phi+360.;

phi=((phi+30.)/60.-(Int_t (phi+30.))/60)*60.-30.;

phi = phi*deg2rad;

// ACTUAL CORRECTION STARTS HERE

factor=V4In.Theta()/(sin(4.*V4In.Theta())*sin(4.*V4In.Theta()));

if(V4In.Theta()*rad2deg>=22.5) factor=V4In.Theta();

// Version 5

flag=sector;

dtheta=(par[flag-1][0]+par[flag-1][1]*phi)*cos(V4In.Theta())/cos(phi)+

(par[flag-1][2]+par[flag-1][3]*phi)*sin(V4In.Theta())+par[flag-1][14]*

cos(V4In.Theta())*cos(V4In.Theta())/cos(phi);;

// new corrected theta

theta=V4In.Theta()+dtheta;
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term=(par[flag-1][4]+par[flag-1][5]*phi)*cos(V4In.Theta())/cos(phi)+

(par[flag-1][6]+par[flag-1][7]*phi)*sin(V4In.Theta())+par[flag-1][15]*

cos(V4In.Theta())*cos(V4In.Theta())/cos(phi);

term=term*V4In.P()*3375./(q*torus*2250.)*factor;

dmom=term+par[flag-1][8]*cos(theta)+par[flag-1][9]*sin(theta)+

par[flag-1][10]*sin(2.*theta)+(par[flag-1][11]*cos(theta)+par[flag-1][12]*

sin(theta)+par[flag-1][13]*sin(2.*theta))*phi;

// new corrected momentum

p_cor=V4In.P()*(1.+dmom);

phi=V4In.Phi();

V4Out.SetPxPyPzE(p_cor*cos(phi)*sin(theta),p_cor*sin(phi)*sin(theta),

p_cor*cos(theta),sqrt(p_cor*p_cor+mass*mass));

return V4Out;

}
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Below is a listing of all 84 parameters we calculated for E6. There
are six groups of parameters A − O for each of the six sectors. The zero
entries in between groups are placeholders for possible additional parameters.
If interpreted within our model of drift chamber displacements, the first 8
parameters of each sector correspond to displacements of a few mm in both
radial direction and along the beam line. In all cases, the displacements of
Region III are roughly twice those of Region II, indicating that straight tracks
remain straight after taking the displacements into account (the nominal
positions of all drift chambers used for cooking the E6 data had been adjusted
following a straight track analysis by Steve Morrow et al.). The φ–dependent
terms indicate rotations of the drift chambers by a few mrad (up to 3 mrad
for Region III chambers) – these could be either physical rotations (yaws and
rolls) or deviations of the wire hole locations from their nominal values.

0.000544

0.002155

-0.000674

-0.000743

-0.002148

0.023805

0.002308

-0.031310

-0.001653

-0.005383

0.003550

-0.017417

-0.000926

0.001714

0

0

0.001530

0.001287

-0.001151

-0.002713

-0.000825

0.014184

0.001793
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-0.010295

-0.008868

-0.006507

0.007697

-0.010701

-0.002416

0.000805

0

0

0.000877

-0.001526

-0.001301

-0.002379

-0.000797

-0.022676

0.000218

0.015191

-0.008622

-0.005061

0.008700

-0.002587

-0.000883

0.001962

0

0

0.000207

-0.002282

-0.003461

-0.001001

-0.001262

-0.014686

0.001080

0.024763

0.000584

0.002870

0.001482

-0.000476

-0.004804
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-0.000161

0

0

-0.000687

0.000899

-0.004286

-0.001755

-0.002735

0.007995

0.001412

-0.009102

-0.003386

0.000869

0.007900

-0.006772

-0.005605

-0.001115

0

0

0.000605

-0.002286

-0.005119

-0.000454

-0.000648

-0.020299

0.000324

0.026492

-0.002688

-0.001121

0.005835

0.004167

-0.003467

-0.001174

0

0
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