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Abstract

We have achieved good results kinematically fitting data taken with the CLAS detector.
We constructed the full covariance matrix by improving the tracking covariance matrix found
in the TBER bank, while adding in energy loss and multiple scattering effects. We have been
able to produce nearly flat Confidence Level distributions in the channels yp — prt7~ and
vp — prta~7°. The pull distributions obtained from these fits are very well approximated by
Gaussians with o’s ranging from 0.966 to 1.064. Kinematic quantities, such as missing mass
spectra, calculated from the fit data show significant improvement over those calculated prior
to fitting. Also, backgrounds can be significantly reduced.

1 Introduction

Kinematic fitting is a mathematical process that uses physical constraints, such as energy-momentum
conservation, to improve measurements. In this paper, we use Lagrangian multipliers to handle
the constraints while fitting using the method of least squares. We will introduce two important
ways of evaluating the performance of the fits, the Confidence Level and pull distributions. The
Confidence Level is used to measure the goodness-of-fit of the data to the hypothesized event. The
pull distributions are used to evaluate the quality of the error estimation.

Track reconstruction in CLAS is carried out in a sector-dependent coordinate system. This co-
ordinate system was also used while performing the kinematic fits. During tracking, a covariance
matrix is produced containing the resolution errors and correlation coefficients of the tracking param-
eters for each track (it can be found in the TBER bank). We have found some small, but important,
errors in this tracking covariance matrix which need to be corrected. The full covariance matrix can
then be constructed by adding in energy loss and multiple scattering effects to the improved tracking
covariance matrix. We have devised a technique which allows us to obtain good approximations for
the errors in the measured quantities. The Confidence Level and pull distributions of the fits are
then used to fine-tune these approximations. Once an accurate covariance matrix is constructed,
the process of kinematic fitting is a fairly simple one.

After constructing the full covariance matrix, we kinematically fit the channels yp — prt7~ and
~vp — prta~7w°. The Confidence Level and pull distributions of the former, which is an inclusive



channel and thus produces a 4-C fit, will be used to demonstrate the quality of the fitting. In this
channel, which contains particles traveling as slow as 8 ~ 0.35 up to as fast as 8 = 0.99, we are
able to produce a nearly flat Confidence Level distribution. The pull distributions of this channel
are very well approximated by Gaussians with ¢’s ranging from 0.966 to 1.064. The latter channel,
which contains a missing neutral particle, will be used to show how kinematic fitting can improve
quantities such as missing mass spectra and reduce backgrounds.

2 Least Squares Fitting

2.1 The Method of Lagrangian Multipliers [1]

In this section, we look at the general case of least squares fitting using the method of Lagrangian
multipliers to handle the constraint equations. In principle, each constraint equation could be used
to eliminate one of the observed quantities. One could then proceed with a smaller set of quantities
to be fit. However, we choose to instead use Lagrangian multipliers allowing us to treat each of the
unknowns equally.

First we set up our notation. The m unknown parameters are put in the vector x. The n
measurable quantities are put in the vector y. The actual measured quantities and their errors are
the n-vectors 1 and e respectively. Therefore,

n=y+e (1)
The vectors x and y are related by the r constraint functions
fe(x,y) =0, k=1,2,...,r. (2)

We assume we have a first approximation of the unknowns xg. We take yo = 1 and require that the
constraint functions be well approximated by linear functions in the neighborhood around (zg, yo)
determined by * — xg and y — yo. We can then Taylor expand, to first order, the constraint
functions in that neighborhood yielding
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and the vectors,

C1
C2
cr = fr(Xo,¥0), c=1 . |, (6)
er
£ =x — Xo, 6=y —Yo. (7)
Using (4)-(7), we can now rewrite (3) as
A+ Bé+c=0. (8)

Since this is a least squares fit, we want to minimize the quantity 5TC,7’ 1§, where C,, is the covari-
ance matrix of the measured quantities. In the case where the n;’s are independent measurements,

n 2
the quantity 6TCn_ 1§ takes on the more familiar form of > %
j=1"7

We now introduce the Lagrangian,
L=6"C, "6 +2p" (A€ + Bé +¢), (9)

where p is the r-vector of Lagrangian multipliers. Setting the total differential of L equal to zero
yields

OL 0oL
T =" 10
5% o= " (10)
since § and £ are independent variables. Substituting the solutions of (10) into (8) we get
£ = — (ATCBA)ilATCBC, (1]‘)

and the least squares estimation of the deviations
6= —C,BTCg(c — A(ATCpA)~' AT Cpe), (12)
where Cp is defined as (BC,BT)"1. Using (11) and (12), we can now write the least squares
estimates for the parameters x and improved measurements y as
X =Xg + &, (13)
Yy =Yo +9. (14)

When the constraint equations are nonlinear, these results should be considered as better approx-
imations and the process iterated. This is done by replacing xo and yo in (4)-(7) by the fit results
for x and y. The iteration process can be carried out until the solution obtained is satisfactory.

We can then write the least squares measurement error estimates as the n-vector

E=T-Y, (15)

where the y;’s are the improved measurements obtained form the final iteration and the n;’s are the
measured values. If the errors are normally distributed and the constraint functions are sufficiently
linear around (xo, yo), then eTCT,’ e follows a x? distribution with r - m degrees of freedom.

Finally, we can use propagation of errors to write the covariance matrix for the improved mea-
surements as
c, =C, - C,B'CsBC, + C,B'CpA(ATCpA) 1ATCpBC,. (16)



2.2 Confidence Levels and Pull Distributions [2]

After performing the fit, we need a way to check the agreement between the data and the hypothesis.
The primary measure of the goodness-of-fit of an event is the Confidence Level. The Confidence
Level of a fit result is defined as,
CL = / Flzin)dz | (17)
XZ
where f(z;n) is the x? probability density function with n degrees of freedom(where we assume
normally distributed errors). It is a measure of the probability that a x? from the theoretical distri-

bution is greater than the x? obtained from the fit. Values for the Confidence Level can be obtained
from the CERNLIB routine PROB, or in ROOT by calling the function TMath::Prob(chisq,ndf).

In the absence of background, the Confidence Level follows a flat distribution ranging from 0
to 1. Background events, those that do not satisfy the hypothesized constraint equations, produce
a sharp rise near zero Confidence Level. Cutting out events with low Confidence Level provides a
controlled and understandable way to eliminate the majority of the background while losing a well
defined amount of the signal.

To effectively use the Confidence Level to cut background, a good understanding of each fit
quantity’s errors (systematic and resolution) is needed. The quality of the error estimation can be
obtained by examining the Pull Distributions, also called “stretch functions”. The Pull of the i* fit

quantity is defined as,
€

o)’
where €¢; = n; — y; with standard deviation o.,. We write the pulls in terms of € because it is the

only quantity for which the true mean value of each measurement is known. Substituting in for o,
we can write the i** pull as,

(18)
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The z;’s should be normally distributed about zero with o = 1. A systematic error in one of the
measured quantities, 7;, can be seen as an overall shift in the distribution of the corresponding z; away
from zero. Similarly, if the error of 7; has been consistently (overestimated) underestimated, then
the corresponding Pull distribution will be too (narrow) broad. Also, it is possible to parameterize
the errors incorrectly but have a flat Confidence Level distribution. The pull distributions provide
a way to guard against this.

Zi = (19)

3 Track Reconstruction in CLAS

Before discussing momentum corrections and kinematic fitting, we must first cover how tracking is
performed in CLAS. This section deals with the coordinate system used and the covariance matrix
produced during track reconstruction. The tracking parameters will also be introduced. We will
show how the tracking system relates to the more familiar lab system and evaluate the tracking
covariance matrix.



Figure 1: The lab coordinate system along with the tracking coordinates for sector 2 [3].

3.1 Coordinate Systems [4]

Track reconstruction in CLAS is carried out in a sector-dependent coordinate system. In the tracking
coordinate system, the x4.qck-axis lies along the beam line, the yi.qcr-axis passes through the center
of the sector and the zy.,cr-axis is aligned with the average magnetic field direction in that sector
(see fig.1). Therefore, the tracking coordinates are related to the lab coordinates by,

Ttrack Zlab
Ytrack = cos(a)mlab + Sin(a)ylab ) (20)
Ztrack _Sin(a)mlab + Cos(a)ylab

where a = Z(Nyector — 1).

The tracking parameters are q/p, A, ¢, Do and Zy. The latter two are used in vertex reconstruc-
tion but were not used in kinematic fitting and will not be discussed here. The parameter q is the
charge of the particle, p is the particle’s momentum in the lab frame, A is the dipolar angle relative
to the sector’s (Tirack; Ytrack) plane (A e (=%, %)) and ¢ is the angle in the sector’s (Ztrack, Ytrack)
plane relative to the x4.qc5-axis. The track parameters along with the covariance matrix for each

track can be found in the TBER bank.

Using the tracking coordinates, we can then write the momentum in the lab frame as

Doy p(cos(A)sin(@)cos(a) — sin(N)sin(a))
Pyaw | = | plcos(N)sin(¢)sin(a) + sin(X)cos(a)) | - (21)
Pzras p cos(A)cos(¢)

It was necessary to use the tracking system while performing the kinematic fits so that the
correlation coefficients and resolution errors of the fit parameters could be obtained.
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Figure 2: Resolution errors found in the TBER bank for the tracking angles ¢ and A in miliradians.
Fine-tuning performed during kinematic fitting suggests these values are too small by a factor of
about 1.5.

3.2 The Tracking Covariance Matrix

It is important to note that the covariance matrix found in the TBER bank is determined from
tracking information only. It does not include the effects of multiple scattering or energy loss in
projecting back to the vertex. The particle experiences these effects prior to reaching the tracking
region of CLAS. We will address these issues later on, for now we’re only interested in the resolution
errors of the fit parameters and the correlation coefficients.

When performing kinematic fitting, it is very important to have an accurate covariance matrix.
Therefore, we felt it was necessary to check if the values found in the tracking covariance matrix
were reasonable. First, let’s consider the tracking angles, A and ¢. The resolution error of ¢ should
be approximately given by, ”

8

U¢res ~ E ? (22)

where o, is the spatial resolution of the detector in the plane of ¢ and R is the distance from the
track vertex to the drift chambers. Using (22) with a spatial resolution of approximately 200 ym and
an average distance to the region one drift chambers of about 75 cm, we expect 0y4,., ~ 0.27Tmrad.
Similarly, we expect oy,,, to be about an order of magnitude bigger due to worse spatial resolution.
The values found in the TBER bank for 03 and 03 are in good agreement with these estimates
(fig-2). However, when performing the kinematic fits we found each of these values to be too small
by a factor of 1.5. Therefore we adjusted the angular resolution errors according to,

U¢res = 1'5 J¢TBER ? (23)

OXres — 1.5 OATBER > (24)



where 04, ., and ox, .., are the angular resolution errors found in the TBER bank. This results
in an average resolution for ¢ (which is closely related to € in the lab coordinate system) of about
0.48 mrad and an average resolution for A (which is closely related to ¢ in the lab coordinate system)
of about 3.5 mrad. This translates into a reasonable average spatial resolution in the plane of ¢ of
about 300um.

Tracking is performed using the quantity q/p, however, it is easier to include the energy loss
effects if we fit in terms of p. Therefore, we adjusted the covariance matrix according to,

6]) 2 a4 p4 a4

pp — [ & pp _ & App )

“ (3(q/p)) Ci e @it (25)
24 2 aq

Cg¢:( (I/P>( ) “i :_%C"P ’ (2)
2 a

CP*—( Op )( =Pt 27

K d(q/p) g " (27)

where p is the measured momentum of the particle.

Evaluating the resolution error of p isn’t as easy as for A and ¢, but we can make some general
arguments about its dependence on p and 6 (the polar angle in the lab system). First, we know
that o,,,, must increase as p increases (tracks with higher momentum bend less which leads to
worse resolution). Furthermore, tracking a particle through a magnetic field generally results in
op/p being linear in p. The resolution must also depend on [ B- cﬁ, the amount of magnetic field
the particle travels through. The toroidal field produced in CLAS is approximately azimuthally
uniform, however, it has a strong 6 dependence. Figure 3 clearly shows the strength of the magnetic

field is greater in the forward direction and decreases as # increases. Therefore, o, ., must increase
with 6.

Figure 5 shows the values of oy, ., /p taken from the TBER bank are in fact linear in p and have
the 6-dependence described above. However, when performing the kinematic fits, we found that the
overall magnitude of o, ., appeared to be too small by a factor of 2. Coincidently, the torus current
for the runs we are examining was approximately I;,,/2. If the errors found in the TBER bank
do not account for the actual torus current, then they would be off by a factor of I, /I (since the
toroidal field is linear in I). For the glc run period this appears to be the case. So we adjusted the
momentum errors according to,

Ias
Opres = —7 (28)

I UPTBE‘R ?

where Ip,,, = 38604, I is the actual torus current in amps and op,,, ., is the standard deviation of
p found in the TBER bank. We end the discussion on oy,,, by noting that all of the runs we have
analyzed have I ~ 19204, so we can’t be sure if neglecting the actual torus current is the reason for
the discrepancy in op, .5, however, it seems to be the most likely explanation.

The correlation coefficients appear to be reasonable. They show a strong correlation between
a/p and ¢ as expected (recall that ¢ is closely related to 6 in the lab system). All other correlations
are relatively weak, which is also what we would expect (see fig.4).
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Figure 3: The magnitude of the toroidal magnetic field, at full current, in kilogauss. Z is the
beam direction and p is the distance from the beam line in cylindrical coordinates. The strong 6
dependence of the field is clearly evident.
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Figure 4: Correlation coefficients for the tracking parameters 1%, A, ¢. There is a strong correlation
between q/p and ¢, p(q/p,#) ~ —0.85. The correlations between the other tracking parameters
are fairly weak, p(q/p,\) = —0.15 and p(\, @) ~ —0.27. The small bumps away from the peaks
correspond to poorly measured tracks.
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Figure 5: 0p,.,/p vs. p : Resolution errors found in the TBER bank for the magnitude of the
measured momentum for four different polar angle ranges. As expected, op,., /p is linear in p and
increases with 8. Fine-tuning performed during kinematic fitting suggests the TBER bank does
not account for the actual torus current. Therefore, the resolution error of the momentum must be
scaled by a factor of Iaq/1.
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Figure 6: Measured Momenta, for protons and pions detected in yp — prtn~X events.

4 Calculating Energy Loss and Multiple Scattering Effects
in CLAS

A large number of the protons detected in the glc run period from yp — prT7~X events, are slow
enough for energy loss and multiple scattering effects, mainly in the target and the carbon fiber beam
pipe, to become important (a typical proton travels at 8 & 0.7, see fig.6b). The protons experience
energy loss before they enter the drift chamber regions. Consequently, the measured momentum is
smaller than the momentum the proton had leaving the interaction vertex and must be corrected.
We must also consider how errors due to energy loss and multiple scattering affect the covariance
matrix. Below we present an approach that allows us to calculate the mean momentum correction
and to estimate the errors in the measured kinematic quantities.

To calculate the affects of energy loss and multiple scattering on the proton, we needed a clean,
inclusive channel with a proton in the final state. We chose yp — prt7—, which was then kinemati-
cally fit treating the proton as a missing particle. The fit proton was then compared to the measured
proton to determine the effects of multiple scattering and energy loss. The pions are also affected
by these processes, but to a much lesser degree (a typical pion travels at 8 > 0.87, see fig.6a). Still,
energy loss and multiple scattering effects are important for pions and must be included.

To isolate the channel yp — pr*7~, we required that each of the final state particles be detected
and the total missing mass squared € (—0.01,0.01)(GeV/c?)2. We also required the missing mass
off the pions to be within 40 MeV of the proton mass. To help eliminate background events due
to matching an event with the wrong beam photon, a cut was placed on the missing momentum
in the beam direction of |pj,;ssin,| < 0.05 GeV/c [5]. Fiducial volume cuts were also applied to
eliminate events containing particles whose trajectories took them through regions of CLAS where

10
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Figure 7: Confidence Level distribution for yp — prTn~ events treating the proton as a missing
particle (a 1-C fit).

the resolution is significantly decreased due to shadowing caused by the toroidal coils. Finally, after
the kinematic fit was performed with the missing proton, we required the Confidence Level to be
at least 0.1 (see fig.7). These cuts were chosen to insure that the channel was clean and because
they are the standard types of cuts made on CLAS data. Later, we will show that once you have
an accurate covariance matrix, only the confidence level cut is necessary.

4.1 Momentum Corrections

Momentum corrections for charged particles in photon runs at CLAS are handled by the Eloss pack-
age written by Eugene Pasyuk. This package contains all the information concerning the geometry
and material of the target, the beam pipe and the start counter. Below we present an approach
to calculating mean momentum corrections that requires almost no information about what the
particle passes through prior to reaching the tracking region of CLAS. We present this technique as
a quick way to calculate fairly accurate momentum corrections for runs where the Eloss package is
not available. The Eloss package should be used when available (for all photon runs), the main goal
of this section is to demonstrate that some form of momentum corrections must be applied prior to
any fitting.

This section is meant to demonstrate how kinematic fitting could be used to correct measured
momenta. We do not consider vertex positions, which is something that must be done if this
technique were to be used in data analysis. We can not expect to reproduce the accuracy of the
Eloss package, however, the results suggest that the corrections it produces differ from those of the
Eloss package by only about 10% of the correction (for particles that orginate far enough from the
edges of the target for vertex information to be of little importance). Hopefully this section will
show how important momentum corrections are, especially for slow protons.

11
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Figure 8: pfit —Pmeasured VS. Pmeasured: cOmparing measured proton momenta to fit results. Clearly,
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First we consider the path length, z, of material the particle traverses. The two main sources
of energy loss are presumed to be the target and the carbon-fiber beam pipe. Both are cylindrical,
therefore o« 1/sin(f). Figure 8 shows the results of comparing pri; and Preqsureqd for protons.
As expected, the energy lost increases as Pmeasured decreases. We can parameterize the momentum
correction as,

A B C D 1
A =\—4+=s+=+=] ——= 29
Poroton (p P p* pt) sin(0)’ (29)
where p is the measured momentum of the proton and @ is the proton’s polar angle in the lab system.
Figure 9 shows the results of fitting each momentum bin of Ap vs. p in 2 polar angle regions to a
Gaussian, then histogramming the mean along with a plot of (29).

Generalizing this result so that it can be applied to all charged particles gives us,

2 2 3
m A m\ B m C m D 1
= (2Y (A (Z)E (Y S (2)B) 2
mp p mp ) p mp/) P my ) p* ) sin(0)
where m is the mass of the particle, m, is the mass of the proton and p is the measured momentum

of the particle. And of course,
Pcorrected = Pmeasured + AP . (31)

A comparison of the results of this approach to using the Eloss package can be seen in figure 10.
The agreement between the two methods is quite good (they differ by about 10% of the correction for
particles that originate far enough from the edges of the target for vertex positions to be important),
especially considering this method required only a very simple paramaterization of the path length
through the material . The Eloss package is presumed to be more accurate do to all the factors it
considers, and it was used to produce the results of all subsequent sections.

12
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Figure 9: Mean Momentum Corrections: The triangular markers were obtained by fitting each
momentum bin in fig.8 to a Gaussian in the specified polar angle region. The line is (29) plotted
with the values of the constants determined to be the best correction.
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Figure 10: Comparison between corrected momenta obtained from the Eloss package and the tech-
nique discussed in section 4.1. In about 15% of the events the difference in the two corrections is
greater than 10% of the correction, this is caused by the lack of vertex consideration of the technique
presented in this section.

13



4.2 Error Estimation

The same technique, comparing the fit and measured protons, can be used to estimate the errors
from multiple scattering and energy loss. For convenience, we choose to parameterize these errors
in terms of the corrected momentum. It is important to note that it is impossible to entirely keep
pion errors from feeding into the fit proton. The method discussed above is mainly used to obtain
the functional form and a good first approximation of the errors. The Confidence Level and Pull
distribution obtained from the fits must then be used to fine-tune these approximations.

Multiple scattering errors depend on the particle’s path length through the material. The two
main sources of multiple scattering are also presumed to be the target and the carbon fiber beam
pipe giving us = o 1/sin(#), where z is the path length through the material.

The full angular errors should then follow the functional form,

(32)

2
0o =alo2  + | —2ms
$=\e Gy

(33)

2
2 Ums
o)\ = U/\Tes + ] 5
\ (ﬂp\/_smw))
where p is the corrected momentum, o4, . and oy, ., are the angular resolution errors and o,

is a constant parameterizing the effects of multiple scattering from all the material the particle
encounters prior to reaching the drift chambers.

Figure 11a shows A¢ vs. Bpy/sin(f). As expected, the distribution is centered around zero and
its width decreases as Spy/sin(f) increases. Each bin was fit with a Gaussian whose o was then
histogrammed as can be seen in figure 11b. The value of 0,5 was fine-tuned using the Confidence
Level and Pull distributions of the kinematic fits performed below. A plot of (32) using the value of
oms used in the kinematic fits can be seen in figure 11b. The same technique was then used for A,
these results are shown in figures 11c and 11d.

For moderately relativistic particles, the error in the magnitude of the momentum due to energy
loss follows the functional form [6],

02 (M) T, (34)

Peloss ,82

where z is the path length of material the particle traverses. This appears to work well for particles
with # < 0.86, however, it diverges as § — 1. Therefore, a piecewise function was chosen to
approximate the error in p, which is given by,

2
o, = o2 gayy1—b7/2 p2/2 i
i pm+< N0 £8<0.86, (35)
2
_ 2 1.81(761 .
op = \ o5 ..t <7sm(9)> if 6>0.86, (36)
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Figure 11: (a) A¢ vs. Bp +/sin() : Comparing ¢yt and ¢meqsurea for protons in yp — prtr—
events fitting the proton as a missing particle. (b) opp; vs. Bp /sin(#) : the triangular markers
were obtained by fitting each bin of (a) to a Gaussian, the line represents (32) plotted with the value
of o5 used in the kinematic fits. (c),(d) The same as (a),(b) but for the tracking angle .
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Figure 12: 0, vs. p : The triangular markers were obtained by fitting each momentum bin of fig.8
(in each figure’s respective angular region) to a Gaussian, the line represents (35) plotted with the
value of o.; used in the kinematic fits.

where o,,,, is the momentum resolution error, o,; is a constant parameterizing the energy loss effects
and the factor of 1.81 is chosen to make the function continuous. The value of o, was also fine
tuned using the Confidence Level and Pull distributions of the kinematic fits. Figure 12 shows (35)
plotted with the value of o¢; used in the kinematic fitting for two polar angle regions along with the
standard deviation in the momentum obtained by fitting each momentum bin to a Gaussian. To
produce figure 12, we also placed cuts on the pion momenta of |py| < 0.6 GeV and 8, > 35° to help
limit pion momentum errors from feeding into the fit proton.

We conclude this section by discussing the error in the measurement of the tagged photon. The
characteristic angle of beam photons is m.c?/Ey, where m, is the mass of an electron and Ej is the
energy of the electron beam [7]. For the data analyzed in this paper, Fy = 3.115 GeV which gives a
characteristic angle in tagged photons of about 0.16 mrad. This is negligible compared to the total
error in A and ¢ (see fig.11). Therefore, the photon direction is taken to be fixed along the beam
line.

Each of the 384 E-plane paddles in the tagger has an energy resolution of 0.001 Ey [7], which for
our runs is 3.115 MeV. Assuming equal acceptance along the length of each tagger paddle, gives
us,

\ 1 3.115

= E%dE =1.798 MeV? . 37
7B = 6.230 —3.115 ‘ (37)
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4.3 The Full Covariance Matrix

We are now ready to construct the full covariance matrix. To do this, we add the errors from energy
loss and multiple scattering determined in section 4.2 to the diagonal elements of the improved
tracking covariance matrix discussed in section 3.2. We treat energy loss and multiple scattering
errors as being uncorrelated. Therefore, the off diagonal elements of the improved tracking covariance
matrix are unaffected.

For an event with k charged particles in the final state, there are 3k + 1 fit parameters in the
vector 17 which we can write as,
E,
n
A1
¢

Pk
Ak
b

where E, is the tagged photon energy and p;, A; and ¢; are the momentum magnitude and tracking
angles of the " charged particle. The measurement of the tagged photon energy is not correlated
to any other measurements. And, of course, the measurements of each charged particle’s kinematic
quantities are not correlated with measurements of the kinematic quantities of any other particle.
Therefore, we can write the full covariance matrix for an event with k charged particles in the final
state as,

o3, 0 0 0 0 0 0
0 ¢ ¢ P 0 0 0
0 Ccrr oM M 0 0 0
0 cr o) ¢ 0 0 0
Cn: . . . ) (39)
0 0 0 0 .. cr oot ocr
0 0 0 0 .. C*c» ¢
0 0 0 0 .. Ccr ocy c¥
where o, is given in (37) and,
InaeD?,\ > 55 0.0027GeVy; \2 (1 - B2/2
C?P — mi CPi Pi . —B; 2 i
’ < Ig; ) risn + O(086 B)< Bi )(32'“(90)
2.39 x 10 5GeV?
+®(5i—0.86)< win(0) ) , (40)
2
O = 20500 + L0026V rad]) (41)
Bipir/sin(0;)
2
Bipir/sin(6;)
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1‘5Im111'p%n1- %)\1‘
Czp)\ == (7) Creer > (43)

Ig;
1.51 p%n. 2ig,
Ccr = — (%) ClEnR » (44)
A Ai i
C} =2.250801 (45)

Lz = 3860A is the maximum torus current, I is the actual torus current, p,,, is the measured
value of the magnitude of the i** charged particle’s momentum and C%}i, ., are the components of
the tracking covariance matrix found in the TBER bank (values given for g, and o5 are for the

glc target).

For forward traveling particles that exit through the end of the target, a scale factor must be
imposed to the energy loss and multiple scattering effects (the 1/sin(#) parameterization of the path
length is no longer valid). To do this, we use vertex information from the MVRT bank to calculate
how much target material the particle actually traveled through. Then we just scale the contribution
from the target material to the energy loss and multiple scattering errors. We also note that if a
channel is to be fit that contains a neutral particle that decays, some care should be taken to scale
the energy loss and multiple scattering effects based on the position of the secondary vertex.

Now that we have a good estimate for the covariance matrix, we will discuss two examples of
kinematic fitting in CLAS.

5 Kinematic Fit of yp — prtnw~

The first step in kinematically fitting the channel vp — prtn~ is too define our vector of fit
parameters. Using notation from section 4.3, we write the vector 1 for this channel as,

E’Y
Py
AI’
Pp
n= f: : (46)
¢7r+
Pr-
M-
P

With this definition of 7 it is easy to construct the covariance matrix, C, using (39)-(45). In terms
of these parameters, the energy-momentum constraint functions for this channel are,

foy) = Ey +myc® - \/p§62 +m2ct — \/pi+62 +m2, et — \/pi_ A +m?_ct, (47)

[(Y) = poleos(Ap)sin(dp)cos(ap) — sin(Ap)sin(ap)] + pr+[cos(Ar+ ) sin(dr+)cos(ar+)
- Sin(’\w+)5in(a7r+ )] + Pr- [COS(’\W— )s'in(d)w— )cos(a,r—) - Sin()‘w— )Sin(aw— )] ) (48)
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Figure 13: Confidence Level distribution obtained by kinematically fitting the channel yp — prtn—
including the measured proton (a 4-C fit).

fa(y) = polcos(Ap)sin(dp)sin(ap) + sin(Ap)cos(ap)] + pr+[cos(Ar+ )sin(¢n+)sin(az+)
+'Sin(Aw+)Cos(aw+)]+'pw—[COS(AW—)Sin(¢W—)Sin(aw—) +'Sin(Aw—)COS(aw—)]7(49)

f3(y) = ppcos(Ap)cos(¢p) + pr+cos( A+ )cos(r+) + Pr—cos(Ar-)cos(¢pr-) — Ey /¢, (50)

where m,, is the mass of the target proton.

We then take yo = 1, where the n;’s are the measured values of the fit parameters. From (47)-
(50), we can then use (5) to write the matrix B in terms of yo. The least squares estimates of the
deviations of the fit parameters can then be written as,

6= -C,B Czec, (51)

where Cg is defined as (BC,BT)~! and c is defined in (6). The improved measurements are then
written as y = yo + 0. The process is iterated substituting the value obtained for y in the previous
step for yo and repeating the calculation until the solution obtained is satisfactory (any criteria
enforced here to terminate the iteration process is arbitrary, we simply chose to let each event
iterate 10 times). After performing the last iteration, we use € = p—y to calculate eTCn_ Le which
follows a x2 distribution with 4 degrees of freedom.

The resulting Confidence Level distribution can be seen in figure 13. As expected the distribution
is nearly flat with a sharp rise near zero (recall the discussion in section 2.2). Figure 14 shows the
corresponding Pull distributions, which also look like we would expect. They are each very well
approximated by a Gaussian centered near zero with o =~ 1.

The agreement between the Confidence Level and Pull distributions obtained from the fit and
the theoretical distributions is quite good. This provides a high degree of confidence in the quality
of the fitting and the parameterization of the errors. We also note that we have made no missing
mass or momentum cuts. We simply let the fit decide whether the data matches the hypothesized
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Figure 14: Pull distributions obtained from the 4-C kinematic fit of vyp — prta~ (with a 1%
Confidence Level cut applied). The line represents fitting the data to a Gaussian, the mean and o
of which can be found in table 1.
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Table 1: means and ¢’s obtained by fitting the pull distributions of fig.14 to Guassians.
| | mean o |
Dp 0.123 | 1.064
Ap || -0.015 | 0.966
bp 0.045 | 0.989
P+ || -0.084 | 1.001
A+ || -0.054 | 1.042
¢r+ || -0.045 | 0.999
pr— | -0.149 | 1.020
Ar— || 0.004 | 1.012
Or— || -0.097 | 0.998
E, 0.081 | 0.993

event. In the next section, we will show how kinematically fitting data can improve missing mass
spectra and other kinematically derived quantities.

6 Kinematic Fit of yp — prtn—=w°

The channel yp — prT 7~ 7° provides a good example of how to kinematically fit data in a channel
with an undetected particle. We will also use this channel to demonstrate how kinematically fitting
data can improve derived kinematic quantities. The setup for this channel is very similar to that of
vp — prtr~. The vector n and the covariance matrix C, are the same as in section 5. We again
set yo = 7, where the 7;’s are the measured values of the fit parameters.

To handle the undetected 7°, we set up the vector & according to ,

Pz o
X = Dyro ’ (52)
Pz

where z,y and z are the Cartesian coordinates in the lab system. We construct our initial estimate
of the unknown parameters, xg, out of the total missing 4-momentum. The constraint functions for
this channel can then be obtained by adding the energy and momentum of the 7° to (47)-(50).

Using the constraint functions, along with the definitions of yo and x¢, the matrices A and B
along with the vector c are easily obtained from (4)-(6). We can then use (11) and (12) to write the
least squares estimates of the deviations in the fit parameters as,

£= — (ATCpA) AT Cpe, (53)
5= —CyB"Cp(c+ Af) . (54)

The improved measurements are again written as y = yo + 0 and the least squares estimates
of the parameters z; are given by £ = x¢ + £. The process is then iterated, substituting the
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Figure 15: Confidence Level distribution obtained by kinematically fitting the channel vp —
prtr w° (a 1-C fit).

values obtained for y and x in the previous step for yo and xo and repeating the calculation.
After performing the last iteration, we again use € = n—y to calculate eTC’n_ Le which follows a x?2
distribution with 1 degree of freedom. The Confidence Level distribution obtained from this fit can
be seen in figure 15. It is important to note here that we have made no missing mass cuts to select
out ¢ events. We simply fit to the hypothesis that there was a missing 7°, and use the Confidence
Level to determine whether this was the case.

We now demonstrate how kinematically fitting data can improve derived kinematic quantities.
Figure 16 shows the missing mass off the proton from yp — pr ™7~ 7° events before and after fitting.
The fit clearly enhances the peaks corresponding to the 1 and w mesons (the improvement of the 7
is quite pronounced, see fig.16b).

Another dramatic affect of kinematic fitting can be seen if we look in the vp — pw channel. The
amplitude for the decay w — 37 can be written as [8],

M = M;pMp , (55)

where M ;p carries the angular momentum and parity dependence and My carries the remaining
energy-momentum dependence. My is approximately constant, yielding,

M x MJP - (56)
The w has J¥ = 1~ and decays strongly, therefore, we can write M;p as,
Myp o< (17 |JPsyr) (57)

The 37 system has negative intrinsic parity, therefore the 1~ piece of the state JP must be in an
angular momentum state with J¥ = 1*. We can use a J** rank traceless tensor which is symmetric
in every pair of indices to describe the angular momentum state J [8]. Clearly, the only 1% rank

22



400

400001 E
35000} pre-fit 3501
30000/ post-fit 300 7
25000 250 ;
200001 200 ;
15000 ; 150 ;
100001 1000

5000 501

0706 08 1 1z 14 1s 950510,

(a) (b)

Figure 16: Missing mass off the proton from vp — prt 7~ 7° events before and after kinematic fitting.
(b) is a close up of (a) in the 7-mass region where the peak in the fit data is clearly enhanced.

tensor with positive parity we can construct is p;, X p;, where m; and 7y are any two of the three
decay pions (momenta measured in w rest frame). Therefore, the probability density of the decay
w — 3 is given by,

P(w = 37) & |Pr, X Prmol® - (58)

The maximum value of |p;, X Pm,|> occurs when, in the w rest frame, the magnitude of all
three pions’ momenta are equal. We can then define the normalized quantity A as |pr, X Prl|’
divided by its maximum value. Since the probability density of the decay is linear in A, a histogram
of events vs. A, assuming all pions originate from w decays, should look like a triangular wedge
with zero events at A = 0 and reaching a maximum number of events at A = 1. Background
events, pions that do not originate from an w decay, produce a flat distribution from 0 to 1 (energy-
momentum conservation sets the upper limit on A at 1, regardless of what type of decay produced
the pions). Thus, this gives us an excellent way to calculate the number of w events and the amount
of background present.

Figure 17a shows X plotted both before and after performing the kinematic fit for the same set
of events. The fit result is a dramatic improvement. Kinematic fitting strictly enforces energy-
momentum conservation, something that is clearly missing in the pre-fit plot (notice the number of
events with A > 1).

A more important result can be seen in figure 17b. The red histogram was produced without
performing any kinematic fitting and using traditional missing mass cuts. For this histogram, we
selected out events with a m° by requiring the missing mass off the proton, 7+ and 7~ to be between
70 and 210 MeV. We then required the missing mass off the proton to be between 743 and 823 MeV
to select out w events. For the blue histogram we kinematically fit the data and made no missing
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Figure 17: X before and after fitting. (a) shows how fitting improves the shape of A for the same
set of events (recall A should look like a triangular wedge on top of a flat background). (b) shows
how using Confidence Level cuts and fit data, not only improves the shape of the distribution, but
reduces the background by about 20% compared to selecting events by making missing mass cuts
to identify 7°’s.

mass cut to select 7° events. Instead, we required the Confidence Level to be greater than 0.02.
We then made the same cut to identify w events as before, except this time using the missing mass
off the proton after fitting. The shape of the A distribution is again improved, but what’s more
interesting is that we’ve eliminated about 20% of the background while losing virtually no signal.

7 Conclusion

We have been able to successfully kinematically fit the channels yp — prt7n~n° and vp — prtn~.
The Confidence Level and pull distributions obtained from these fits are in good agreement with the
theoretical distributions. Kinematic quantities, such as missing mass spectra, calculated from the
fit data show significant improvement over those calculated prior to fitting. We have also been able
to use kinematic fitting to reduce background in the channel yp — pw. The results presented here
are for the glc target. Hopefully, this paper describes the process used to calculate energy loss and
multiple scattering effects well enough that it can be repeated for other targets.
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