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This note describes the dispersion of fast pulses as they propagate down a
variety of commonly used cables. We apply the formalism used by Fidecaro
more than thirty years ago (1] to model the transmission in coaxial cables.
The method, however, may be extended to ribbon cables which are routinely
used to carry wire chamber signals. Here the transmission line characteristics
of the cable are relatively poor, but may be modeled in a similar fashion. In
the first section we introduce the framework for computation. In the second
section we compare the prediction of the programs with measured distortion
in a variety of cables., The final section describes the application of the
formalism to a few specific cases of interest.

1 Formalism

The wave equation {2] for the voltage V = V(z)e™*, at a fixed frequency f
(w=2rf), along the length z of a coaxial line is given by

%
= =T (1)
where y=a+ik = /(R+iwL)(G +iwC) (2)

The variables R, L, C have their usual meanings of resistance, inductance and
capacitance per unit length of cable. G is the conductance per unit length
of the dielectric. We also define the characteristic impedance Z of the cable

|R +iwL
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G + wC (3)

In general, @ and k are both complicated functions of w, R, G, L and C.
However, at high frequencies such that R/wL €« 1 and G/wC € 1, @ and k




may be approximated by

R
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. (R\/g + G‘/_g) (4)
k = wV/IC (5)

The solution to Equation 1 is given by
V(z,t) = Vyexp(iwt —ikz — az) (6)

The explicit w dependence of a and k is not important for the distortion
or attenuation of pulses at high frequencies. The term (ikz) in the exponent
gives the overall delay of the signal incurred in transmission down the cable.
However, at high frequencies the resistance of the conductor, R, and the con-
ductance of the dielectric, G (see Equation 4), may no longer be regarded as
constants. It is their implicit w dependence which gives rise to the distortion
of pulses. We parametrize a in the following way:

a = 61+C2\/§+C3f (7)
o = 3% (®)

The first term corresponds to the direct current (d.c.) resistance of the center
conductor. * The constants c; and c; were obtained as fits to the attenuation
of each cable, as specified by the manufacturer in decibels per 100 m:

R(a) = (1!1_232) x Attenuation(dB) (9)

The parametrization of a for several cables in shown in Figure 1 and the
constants are listed in Table 1. The second term represents the frequency
dependence of the resistance through the skin effect, which has equal real
and imaginary parts. The third term is due to leakage across the dielectric
and models the frequency behavior of G. A quick glance at the table shows

!The resistance of the shield may also contribute to R,.. However, in general this
depends on the specific cabling scheme and in practice if Ry is important the shield
resistance may be neglected.




Table 1: Constants used to specify the behavior of a for several cables of
interest. The real part of @ was fitted to the form c¢;+c3+/f +caf, with the
frequency expressed in MHz and the constants in units of (100 m)~!. The
first constant is determined by the d.c. resistance of the cable conductor.

Description Cable Type ¢ 3 c3

Flat Ribbon Cable ? 9V28 107 | .581 | .0084
Ribbon Coaxial Cable ? 9K50 .239 | .385 | .0000
RG-174 Belden 8216 320 | .259 | .0028
RG-58 Belden 8259 035 .144 | .0036
RG-213 Belden 8267 006 | .060 | .0011
Low Loss Semi-solid Polyethylene | Belden 9913 .003 | .045 | .0003
Low Loss 7/8” Foam HELIAX LDF5 | .001 | .013 | .00001

that by far the most important term is ¢;, but in the limits of low (high)
frequency ¢; (ca) cannot be ignored.
A voltage pulse may be represented by a Fourier Integral as

V(z,t)

Vaw
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/ V(0, t) exp(—iwt)dt

(10)

(11)

Here we have ignored the fixed delay in the cable, which will not aftect the
" shape of the pulse as it travels down the cable. The shape of the pulse V(z,t)
is computed at any position z along the cable by insertion of the appropriate
values of a (from Equation 7) and V,, as determined in Equation 11. In
practice one must evaluate these expressions numerically with fast Fourier

transform techniques [3].

*The specifications for this cable are given only up to 100 MHs.




1.1 Square Wave

The case of a square input pulse of width A, beginning at t=a, may be
computed analytically using tabulated Laplace transforms. This ideal case
is worth investigating since the solution may be obtained in closed form. We
rewrite the above equations for V(z,t) making the substitution s=iw. We
also make the simplification that ¢;=c3=0.

+iom

V(z,t) = -2%; / V,exp(at-—cn/%z)da (12)
: —asf] __ ,—Aas
Vv, = e (1's e™27) (13)
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Erfe(x) is the complementary error function defined in the standard way.
Causality imposes that the voltage signal V(z,t) be zero before t=a. The
term ¢, if included, will contribute an overall factor of e~**. The rise time
of the signal is determined by the parameter

o= dm (us) (13)

We note that 7, and therefore the dispersion increases as the square of the
constant c; and the length of cable z. This relation may be used to scale
results from one cable to another when ¢, and ¢3 can be neglected.

In Figure 2 we compare the analytical formula given by [quation 14 with
the numerical transforms using Equations 10 and 11. The conditions are such
that ¢; and ¢3 are small, so the agreement is good. We note some technical
difficulties encountered when using numerical transforms at sharp boundaries
which show up as oscillations in the beginning and the end of the square pulse
in Figure 2. (See also Figure 5). Improved accuracies may be achieved by
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increasing the sampling grid for the transform. For many applications these
numerical problems are minimal because in practice pulses have finite rise
times [6)].

2 Comparisons with data

We have measured the response of several coaxial cables to a NIM logic signal
(=75 V and of 10 ns duration). These include RG-58, standard cable for fast
NIM electronics, RG-213, formerly RG-8A/U and Belden 9913, a low-loss °
semi-solid polyethylene cable. The lengths of the cables (~ 300 ns) were
chosen to match the time required to form a first level trigger for the CLAS
detector [4]. The shapes of the signals, shown in Figure 3, are well-reproduced
including the leading and falling edges. Note that the cable dispersion in high
quality Belden 9913 is approximately equal to the dispersion in standard RG-
213 cable for the same time delay. This is due to the fact that the slower
velocity in RG-213 (3=.66 vs 3 = .84 for 9913) compensates for the larger
attenunation as a function of cable length (see constant ¢; in Table 1). Thus,
either cable serves equally well for the purpose of delaying signals. The
dispersion in RG-58 is so large that after 80 m of cable, the original logic -
signal must be regenerated.

The response of RG-174, miniature cable used for short cable connections,
was measured in response to a NIM signal of 50 ns duration in order to allow
the output signal approach its asymptotic level (see Figure 4). This level
corresponds to low Fourier frequency components and the d.c. resistance
becomes important (see Equation 8). However, given that approximations
were made which are only valid in the high frequency regime, one should not
expect the low frequency limit to be reliable. However, it is worth investigat-
ing this limit, as it is important in some practical applications. For example,
ECL logic signals are often transmitted over long distances using flat ribbon
cable. In the d.c. limit the voltage levels are reduced by

Vour  _ 1 R (16)

:1""".

Vin  1+% z

This is twice the value expected in lowest order from Equation 8. To illustrate
the effect of the term c;, consider the result of the simulation in Figure 5 for
the propagation of a lus logic pulse through 100 m of RG-174 cable. The
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simulation also shows the output pulses expected for the case when ¢,=0.
The voltage level expected in the d.c. limit is 0.44 V. The simulation gives
0.5 V, somewhat lower than that from using the term ¢, alone (0.55 V), and
closer to the actual value. However, neglecting this term altogether has a
dramatic effect in this limit, as shown in the Figure, and cannot be ignored.

A final comparison with data was made for the response of twisted-pair
flat ribbon cable (Belden 9V28) to a fast analog signal coming from the CLAS
(4] drift chamber pre-amplifier (see Figure 6). This study was undertaken to
consider the possibility of carrying these signals through 30 ft (9.14 m) of
ribbon cable from the pre-amplifier, situated next to the drift chamber wires,
to the post-amplifier located in electronic racks outside the detector system.
The simulation predicts that the signal would be attenunated by 0.6 compared
to the measured value of 0.7. However, the rise and fall times of the pulse
are well reproduced.

3 Applications

The dispersion of an Amperex XP2262 photomultiplier (PMT) pulse after
50 m of RG-213, RG-58 and RG-174 is shown in Figure 7. The pulse shape
is retained by the RG-213 cable and slowly deteriorates for RG-58 and RG-
174. The increase in rise time with cable length is relatively slow relative
to the expectation given by Equation 15. This can be traced to the very
narrow pulse width of the photomultiplier. For wider pulses, the rise time
is no longer limited by the pulse width and degrades faster with increasing
cable length. This is illustrated in Figure 8 which shows the rise times as a
function of cable length for two pulses of different widths. The time slewing
of the pulse with pulse height for the photomultiplier pulse is shown in Figure
9 for various cable lengths. The magnitude of the time-walk increases for the
longer cable lengths as expected, roughly in inverse proportion to the rise
time. The slewing of the time measured by a leading-edge discriminator as
the pulse height is varied by +50% is 1.15 ns for the pulse directly out of
the photomultiplier compared to 1.45 ns after the pulse is delayed by 100
m of RG-213 cable. Estimates for other cables may be obtained by use of
Equation 15 in the approximation that ¢; and ¢; are neglected.

As pulses propagate down a cable, they disperse over time and narrow
gates may no longer contain the total charge. This effect is illustrated in




Figure 10. A PMT pulse with a baseline width of 30 ns is totally contained
inside a 40 ns gate. However, only 85% of the charge is inside the gate after
50 m of RG-58 cable. After 100 m of RG-213 cable 88% of the signal is still
inside the gate. The long tails will also cause a change in the d.c. baseline
at high rates which will be shifted by the average charge injected onto the
cable.

In a final example (Figure 11) we show the accelerator RF timing signals
(500 MHz) which control the CEBAF beam structure to each End Station.
The control signals are carried by low-loss 7/8” foam cable. After a 1000 ft
run of cable the sine waves are attenuated by a factor of two. Because the
input is a pure sine wave the output signal is not distorted, simply shifted in
phase.
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A Program WAVE_PROP

We describe the implementation of the numerical evaluation of pulse disper-
sion in the program WAVE_ PROP. WAVE PROP is written in FORTRAN
and adapted to allow the user to select a variety of pulse shapes and display
the expected output from a number of commonly used cables after a speci-
fied length. The Fourier transforms are evaluated using the real fast Fourier
transform routine RFFT from the CERN library KERNLIB [3]. For ease of
implementation and portability, the source code for this routine is available
with the source for WAVE_PROP.

WAVE_PROP has two output files. The first is a file, WAVETOP, may
be used as an input the plotting program TOPDRAWER. ? [7]. It contains
two plots. One shows the input and output pulses as a function of time.
The other shows the time slewing of the output pulse as a function of pulse
height. The second file, WAVELIST, lists all parameters which were used

3While it is very convenient to use TOPDRAWER to display the output plots, the
files are simply columns of ASCII numbers which may easily be used either as inputs to
another plotting package or for any other application.




during the program as well as a few key parameters of the input and output
pulses.

The input file to WAVE_PROP contains the information to select the type
of pulses and cable combinations one wishes to study. A sample procedure
to run the program which includes the input file may be found in the file
WAVE_PROP.BAT. In the following each input line is described in detail.

1. Computation Period

The numerical computation of Fourier integrals can only be
achieved over finite intervals. In practice this has the ef-
fect of modeling a repetitive signal with a period given by
this parameter. Internally the program samples this interval
256 times which determines the maximum Fourier frequen-
cies used. Pileup effects are visible in the output when the
tails of the output spill over into the next period.

Format :
Period

2. Input pulse specification

Name of pulse specification and two parameters specifying
the pulse. The following is a list of values accepted by the
program. Only the parameters which are relevant to a given
input are specified. Unused parameters will nevertheless be
read by the input file. Units of time are ns and frequency is
MHz.

» 'DC’ - digitized drift chamber calibration pulse.

o 'PMT’ - digitized Amperex XP2262 PMT pulse.

¢ 'GAUSS’, mean, sigma - Gaussjan function.

» 'SINE’, frequency, phase — Sine function.

¢ 'PULSE’, peak, a — function ¢4 exp(—bt), peak=a/b.

¢ 'STEP’, width - square wave.
[ ]

'NIM’, width - digitized output from a standard NIM
logic discriminator.




Format :
'NAME’, parameter, parameter

. Title for TOPDRAWER plots
String with the title for the TOPDRAWER plots.

Format :
"TITLE’

. Case specification for TOPDRAWER plots.

String which interprets the TOPDRAWER title string. This
allows the use of upper and lower case, Greek, superscripts
and subscripts, ete. [7].

Format :
'‘CASE’

. Limits for abscissa of first TOPDRAWER plot.

The integrated value of the pulse given in the list file is the
charge collected during this interval.

Format :
Low limit for x-axis, High limit for x-axis

. Number of cables used.

For each cable used, one line specifying the cable and its
length must follow.

Format :
Number

. Cable type, length

A string specifying the cable type, followed by the length of
the cable. The cables types currently implemented are:




® '9V28’ : Belden catalog p. 183, .050 Vari-Twist Flat Cable (28
gauge).

e '9VKS50’ : Belden catalog p. 185, 50 ohm Ribbon Coaxial Cable
(28 gauge).

¢ 'RG174’ : RG-174, Belden 8216.

e 'RG58’ : RG-58, Belden 8259.

e 'RG213’ : RG-213, formerly RG-8A/U, Belden 8267.

e '9913’ : Low loss semi-solid polyethylene RG-8, Belden 9913.

e 'LDF5’ : Low loss 7/8” foam, HELIAX LDFS.

Format :
'TYPE’, length in meters

8. Discriminator Threshold.

Discriminator threshold used to compute the time slewing
which is plotted in the second TOPDRAWER figure. The
threshold is expressed as a fraction of the peak value of the
output pulse.

Format :
Threshold

9. Limits of abscissa on second plot.

The limits are given as a multiplier of the nominal output
pulse height value. For example [.5,1.5] will plot the time
slewing when the output pulse varies from half to one and a
half times its computed value.

Format : :
Low limit for y axis, High limit for x-axis

10. Limits of coordinate axis on second plot.
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The y-axis gives the time at which the output pulse crosses
the threshold for the range of input pulse height variations
given by the abscissa limits.

Format :
Low limit for y-axis, High limit for y-axis
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Figure 1: The dependence of the attenuation coefficient on frequency for
cables ranging from flat ribbon cable through 7/8” foam HELIAX.
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Pulse Distortion After 100m
Low Loss RG—8 (Belden 9913)
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Figure 2: Comparison of numerical and analytical results for a square wave.
Oscillations of the numerical computation near the leading and trailing edges
of the pulse are due to the restriction to a finite number of frequencies in the
Fourier transform.
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Comparisons with Measurements
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Figure 3: Comparison of the simulation with measurements for three coaxial
cables. The input pulse is a standard NIM logic signal 10 ns wide.’ '
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Pulse Dispersion in Cable
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Figure 4: Comparison of the simulation with measurements of a standard
NIM logic signal (50 ns wide) after propagation through 72.6 m of RG-174
cable.
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Pulse Height
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Figure 5: The role of the d.c. resistance (¢,) is demonstrated here in the final
level achieved by a very long pulse. Oscillations of the numerical computation
near the leading and trailing edges of the pulse are due to the restriction to
a finite number of frequencies in the Fourier transform.
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Flat Vari—Twist 9V28 (30ft)
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Figure 6: Comparison of the simulation with measurements for a drift cham-
ber calibration pulse after propagation through 30 ft of flat ribbon cable.
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Response to PMT Pulse, z=50m
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Figure 7: The simulated response of three coaxial cables is shown to a fast
PMT signal. The rise time increases only slightly because the input signal is

SO0 narrow.
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PMT Pulse Rise Time
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Figure 8: The rise time of two fast signals increases as the signal propagates
down RG-213 cable. For very narrow pulses, the rise time does not deteriorate
as fast as it does for wide pulses.
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RG-213, Threshold=20%
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Figure 9: The time slewing for various cable lengths of RG-213 (scale on
right). The time is plotted for a leading-edge discriminator at 20% of the
nominal output pulse height (one in relative units) for that length of cable.
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Pulse Fraction within 40ns Gate
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Figure 10: The fraction of charge of a fast pulse (30 ns at the baseline)
contained within a 40 ns gate is plotted for three coaxial cables as a function
of cable length.
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Figure 11: The output ;)f a 500 MHz sine wave after propagation through
1000 ft of low loss 7/8" foam coaxial cable. The amplitude of the sine wave

decreases by two but is not distorted.
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