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Abstract

We describe the procedure for calibrating the Time-of-Flight(TOF) system
of CLAS. This paper is intended as a guide for updating the calibration con-
stants for a new run period. We define the meanings of all calibration constants
in the Map and how to run the programs to determine them for both electron
and photon beam experiments. We also provide an initial set of quantities
which may be used to monitor the quality of the TOF calibration.
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1 Introduction

The purpose of this CLAS-NOTE is to provide the CLAS users with detailed infor-
mation and a manual on TOF calibration procedure. We do not expect any major
changes of the procedure in the future, however the calibration code may be developed
and improved.

2 TOF Constants

The reconstructed times and energies in the scintillator are determined in the following
way:

l, = Cnorm - (tw - CLR/2 + Ceoe + Cpr) (1)
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T = (t,+tr)/2 (3)
k(A - P)
B = 22— 0) 4
" Moy, @)
k(A - P)
Bp = 22— 4)
f MOg ©)
E = \/ EL - ER (6)
Ve
Yy = % (tL - tR - yoffset) (7)

The variables t;, and tg are the adjusted times of the left and right pmts, and E7, and
E'r are the normalized pulse heights of the same tubes, respectively. Time calibration
constants are adjusted so that the computed times () for particles hitting any scin-
tillator simultaneously are the same. The average time ¢ is a position-independent
determination of time of particle impact. The normalized pulse heights are deter-
mined so that normally incident particles at the center of each scintillator yield a
value of E p = k = 10 MeV. The quantity E is a position-independent measure of
the energy deposited in the scintillator. The position in the scintillator, y, measured
with respect to the center of the counter can be determined using the time difference
between right and left PMTs and the effective propagation velocity of the light in the
scintillator (vess &~ 16 cm/ns).

The constants necessary for these computations are the subject of several of the
calibration steps and itemized below:



2.1 Definitions

1. Pedestals (P). The pedestal corresponds to the ADC channel when no data is
present and is measured by taking the data with a pulser-trigger.

2. TDC calibration constants cg, ¢1, ¢y defined as:
t = = Cco + ClT + CQ,I’2 (8)

where T is the raw time in units of TDC channels and ¢ is the converted time
in ns.

3. Time-walk correction. Time-walk is an instrumental shift in the measured time
using a leading-edge discriminator due to the finite rise time of the analog pulse.
To correct for time-walk, we perform software corrections of the form

C () ()

where T'h is the channel corresponding to the leading-edge discriminator thresh-
old of 20 mV (approximately 35 channels), A is the value of the ADC in channels,

P is the pedestal, and f,(z) is the time-walk-correction function given below.
(See section A.2 for additional details).

This parameterization has the desirable limit that ¢ and ¢,, are equal for minimum-
ionizing pulses which are set to be in ADC channel 600. The function f,(z) is
a monotonically decreasing function of the pulse height A, since the measured
time is late for a pulse with a finite rise time. Our parameterization has three
fit parameters wy, we, and ws. They were determined for each PMT separately
using the laser calibration system. Fits to data indicate that the time-walk
correction is described by a function which first decreases rapidly as a power
law then changes to a slow linear decrease:

w .
fu(z) = x—“i if x < w,
Wo WaWws .
fw(x) = wow3 (1 + U)3) - W T if > Wy (10)

4. PMT status - Poor performing tubes are entered into the database or map so
that the reconstruction code can properly interpret the data stream.

5. Left-Right delay constants (cpg) - the relative time of PMTs on opposite ends
of the same counter.
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Counter-to-counter offsets (cqo.) - relative time shifts of the measured times
from counter to counter. These constants are also referred to as paddle-to-
paddle constants, not to be confused with the next item.

Panel-to-panel (cpg,) - The offsets between scintillator panels are currently all
set to zero, and only preserved for historical compatibility.

. Attenuation length (A) - Measured attenuation length of each counter. The

measured pulsed heights in each counter are given by

MOy,

AL —P = A EL €_y//\ (11)
M
AR—P == kOR ER ey/)‘ (12)

Note that the software allows for different attenuation lengths for right and left
pmts, but in practice we set them both to the same value. See section A.3 for
additional details.

Effective velocity (vess): Measured propagation velocity of scintillator light in
each counter. Relative to the time ¢, at the center of the counter, the propaga-
tion velocity is defined by the relations

tr = to+y/vesy (14)
th = to—y/vess (15)
(16)

As in the case of the attenuation length, the software allows for different prop-
agation velocities for right and left pmts, but we set them equal to each other.
See section A.3 for additional details.

Pulse height normalization (MO; and MOg): the peak heights of minimum-
ionizing particles normally incident at the center of the TOF counter for left
and right PMTs, respectively.

Pulser normalization (¢pemm): overall time scale for time measurements. This
number (= 1) reflects a possible absolute scale shift of the pulser used during
TDC calibration runs relative to the accelerator RF. Presently, deviations are
typically less than 1%.

RF offset: delay time between RF signal and averaged event start time.



For more detailed definition of the constants and description of CLAS TOF sys-
tem see Ref. [1], the postscript file is available on:

http://www.jlab.org/Hall-B/pubs/

2.2 Location of Constants

All calibration constants for the TOF system are written in two off-line Maps:
SC_CALIBRATIONS.map and RF_OFFSETS.map. The Maps are located in:
/group/clas/parms/Maps/. The entries in the Maps are arranged by run number, so
reconstruction codes can correct data on run-by-run basis.

All information in the map-managing software can be obtained from the off-line
web page: “http://www.cebaf.gov/ manak/packages/utilities/maputil/maputil.html”,
which links to the official “Hall B Off-Line” web page.

To work with the existing map, one can use the following commands which use
executables built by the CLAS off-line software librarian:

o scan_map [MapName]| (optional: -t);

o rem_map_arr -m[MapName] -s[subsystem]| -i[itemname] -t[time/runNo];

¢ get_map _float -m[MapName]| -s[subsystem]| -i[itemname] -t[time/runNo]
(optional: -1[arraylen]);

o get_map_int -m[MapName] -s[subsystem]| -i[itemname]| -t[time/runNo]
(optional: -1[arraylen));

o put_map_float -m[MapName]| -s[subsystem]| -i[itemname]| -t[time/runNo];

¢ put_map_int -m[MapName] -s[subsystem] -i[itemname] -t[time/runNo];

Below we show an example of writing to the SC_CALIBRATIONS.map the TOF
counter-to-counters delays arranged in a column in the file DELAY .dat:

$CLAS BIN /put_map_float -m$CLAS_ PARMS/Maps/SC_CALIBRATIONS.map -sdelta_T
-ipaddle2paddle -t1000 < DELAY.dat '

'$CLAS_BIN presently points to the database. For map entries one should point to the proper
release for a given data set, e.g. /group/clas/builds/release-2-5/bin/LinuxRH6.



3 Calibration Sequence

In Table 1 we give the order in which TOF calibrations should be performed and the
requirements for every calibration step. Every step will be described in details in Sections
4 and 5. We want to emphasize that the order of calibration steps is important. We would
like to mention here that the TOF calibration is an iterative procedure. Therefore constants
from previous run periods may be acceptable starting values for monitoring the detector.
However, to achieve a calibration set for production processing, all calibrations should be
redone.

We note that in many cases, we describe two procedures to obtain the same set of
constants. For example, the left-right timing offsets and energy loss calibrations can be
iterated depending on the status of previous calibrations. One method needs only raw
data, so it can be implemented early. The second requires tracking and therefore an initial
reliable drift chamber calibration. The latter procedures are generally more accurate and
automated, but can sometimes be used only in a second iteration of the calibration sequence.

Table 1: The order and requirements for TOF calibration. RF - accelerator Radio
Frequency, TBT - Time-based tracking, SC - SC BOS bank.

Calibration step Main requirements

Status Raw Data

Pedestals dedicated data

TDC calibration dedicated data
Time-walk correction laser data

Left-right Adjustment Raw Data

Energy loss left-right time alignment at SC level
Attenuation length left-right time alignment at SC level
Effective velocity good TBT and all constants above
RF parameters good TBT and all constants above
Counter-to-counter delays | good TBT and all constants above
RF offsets good TBT and all constants above
Geometric constants survey data




4 TOF Calibration Procedures

4.1 Pedestals

The pedestals and TDC calibration constants are obtained by analyzing the data taken
with dedicated DAQ configurations during the experimental run [4].

a) The pedestals are analyzed using PEDMAN on-line utility [4]. The results should be
loaded in TOF ADCs with sparcification threshold 40. The table of pedestals is archived
on CLONOL1 in: /usr/local/clas/parms/pedman/Tfiles. One can easily put the numbers in
the Map by editing the file (removing all comments, checking that the pedestals are within
a resonable range), and using the UNIX command “awk” as shown in the example below
(the second column in the PED.dat will be written into the Map) :

awk {print$N}’ PED.dat | $CLAS_BIN/put_map_float
-m$CLAS_PARMS/Maps/SC_CALIBRATIONS.map -spedestals -ileft -tRUNnumber,
where PED.dat is the name of the file from which the text has been taken, and ‘print§N’
specifies the Nth column number of the file. The ‘-t’ option specifies the run number. The
column number N must be specified to correspond to the particular subsystem and item as
follows:

Table 2: Definition of columns in PED.dat file.

Column Number Definition Subsystem Item
(N) (-s option) | (-i option)

3 left pedestal -spedestals -ileft

5 right pedestal -spedestals -iright

4 left pedestal uncertainty -spedu -ileft

6 left pedestal uncertainty -spedu -iright

4.2 TDC Calibrations
4.2.1 Taking the pulser data

This paragraph is just an introduction to give you an idea of how this works. The real
documentation for this belongs in the “Procedures: DAQ” binder in the counting house
and on the web. The channel to time calibrations of all the CLAS TDCs, except for
drift chamber TDCs, is performed using a special pulser run. To take this data, configure
the DAQ for clas_pulser and start a run. These runs take approximately 40 minutes and
accumulate 40000 events. The pulser stops automatically after all events are taken, at which
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point the operator can end the run and reconfigure the DAQ. A file will be written to the
raid disks (/raid/stage_in) with a name of the form clas_tdc_012345.A00, where 12345 is
the run number. This file will appear on the active raid drive, and gets transferred to the
silo automatically. To retrieve the file from the silo see the jget command? on the CUE
machines.

4.2.2 Structure of pulser data

The data is accumulated by pulsing all the TDC channels of all the crates simultaneously.
For each step, a group of 50 pulses is sent with a fixed delay between the TDC start and stop.
For each subsequent step the delay time is increased by approximately 2ns (the exact time is
2.139 ns). This process is repeated 200 times, after which the whole thing is repeated with
a different bit-mask for the TDCs in the SC crate. There are 4 different masks OxEEEFE,
0zDDDD, 0xBBBB, 0x7777. Note that all other crates are unmasked, and thus take the
same data 4 times. This pattern of events should be 100% predictable, however, various
DAQ problems can interfere. One problem is events other than pulser events causing dead-
time of the DAQ, thus throwing off the sequence. (Scalar events should have been turned off
automatically by the DAQ configuration.) Also note that the raw data banks are readout
along with the BOS banks.

4.2.3 Computer program to analyze pulser runs

The program, which is used to analyze the clas_tdc_012345.A00 data file, is found in
packages/utilities/ TDC_cal, which contains the source code and a standard makefile. It
compiles into an executable called TDC_cal. A recently compiled executable can usually be
found in holtrop/codes/clas/bin/SunOS/TDC_cal. The program has a built-in help screen
which is printed out using the -h option. (Type ./TDC_cal -h at the command line.) Note
that the program needs access to the current MAP files, so the SCLAS_PARMS variable
needs to be defined.

4.2.4 Quick overview of analysis sequence

A typical analysis sequence has the following steps, each of which will be explained in more
detail below. At this point the analysis is still somewhat cumbersome; future improvements
of the program may improve this. This analysis can be done for all crates simultaneously
or for a single crate using the -only option:

Check the correctness of the data sequence using the -spy option.

Analyze the run to check data quality and make histograms using the -hist option.
Check the histograms, perhaps repeat step 1.

Re-analyze the data and put results in the map using the -map option.

-~ w =

2Use ‘man jget’ for details.
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4.2.5 Step 1: Checking data sequence

The data sequence is checked by printing out each TDC reading for one single channel of
one TDC in one crate. The output will then reveal whether the program has the correct
“boundaries”. To print out a sequence you use the -spy option. An example command line
would be:

TDC_cal -only 13 -spy 13.12.4 clas_fc_tdc_017840.A00
Which gives the following output:

Process only crate 13 (1)

Spying on crate 13 slot 12 channel 4

Retrieving ROC13.tab from /group/clas/parms/TT

Running all of clas_fc_tdc_017840.A00

ERROR: NO RAW DATA for crate 13 in event 1!

ERROR: NO RAW DATA for crate 13 in event 2 !

Data Out of Sequence for : 13.13.55 = 290 pattern: eeee — I'll stop complaining.
Data Out of Sequence for : 13.17.09 = 288 pattern: eeee — I'll stop complaining.
Data Out of Sequence for : 13.15.33 = 41 pattern: eeee — I'll stop complaining.

13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:
.. many lines deleted .
13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:
13.12.04 (peak no:

0):
0):
0):
0):

0):

== O
N’ N’ N’ N’ N

—_ =

TDC:
TDC:
TDC:
TDC:

TDC:
: TDC:
: TDC:
: TDC:
: TDC:
: TDC:

202 Expect:
204 Expect:
205 Expect:
204 Expect:

206 Expect:
202 Expect:
204 Expect:
199 Expect:
245 Expect:
244 Expect:

70.59 Mean:
70.59 Mean:
70.59 Mean:
70.59 Mean:

70.59 Mean:
70.59 Mean:
72.73 Mean:
72.73 Mean:
72.73 Mean:
72.73 Mean:

202.00
203.00
203.67
203.75

202.51
202.50
204.00
201.50
216.00
223.00

What you see in this output is that the software has not correctly identified the start
of the read data, the peak number increases (from 0 to 1) but the TDC values does not
increase until 2 events later. To correct for this you can use the “-skew” switch. In this case
you want to skew two events forward so you use “-skew 2”. To skew 3 events backwards
you would use “-skew -3”.

If the data has events missing, you may wish to try the “-autojump” feature. However,
care must be taken with this feature, it often makes things worse rather than better. If
possible you can also take another run.

[
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4.2.6 Step 2: Analyzing the run.

Now that the amount of skew is determined, you can analyze the whole run and make
histograms. An example command line would be:

TDC _cal -only 13 clas_fc_tdc_017840.A00 -hist

(The code will run for some time you can check progress using the “-paddle” switch)

This will create histograms, and produce a text file: $CLAS_PARMS/initfiles/ TDC_RC13.cal
with all the constants, but it will NOT put information in the map. Note that only this
program uses the text files produced, and that it keeps a record of previous calibrations.
This allows one to track the changes of TDC constants over time. You can skip writing
this file by supplying the “-notdc” switch. Note that the program is rather verbose. It
will complain if the masking bits were not working correctly, if there is no data for a TDC
channel (because it is not in use), and if the chi-squared of the fit is high.

4.2.7 Step 3: Checking histograms.

You will now find a number of files in your directory with names like: TDCcal.13.12.plt,
which are “hvplot” files. These text files contain 128 plots each, and can be viewed with
the “hvplot” program (see /home/heddle/Hv/demos/hvplot/SunOS/hvplot. At some later
point T will change this to a ROOT based plotting interface, since “hvplot” is too slow for
normal use.) To few these files type:

/home/heddle/Hv/demos/hvplot/SunOS/hvplot TDCcal.13.12.plt

at the command line, and have some patience.

For each channel in the TDC you will see two plots: the peaks of the data, and fit to the
positions of these peaks. The fit also has the chi-squared and fit parameters plotted. If a
fit looks too far off from the data, the chisquared is high, or the data points are very large,
there is either a problem with the TDC, a problem with the data, or a problem with the
fitting procedure. In that case, try “-spy” on the channel, and if needed contact an expert.

4.2.8 Step 4: Updating the MAP.

If you are satisfied with the results of the program, you need to run it once more with the
“.map” option, so that the new values are entered into the MAP database. The standard file
that is used for the TOF is CLAS_PARMS/Maps/SC_CALIBRATIONS.map. An alternate
file can be specified with the “-mapfile” option. Note that the older version of the map will
be backed up in a file SC_.CCALIBRATIONS.map.~ (emacs backup convention) unless the
“-nobackup” switch is specified.

When you run the code with the “-map” option, it will verify the old map values (usually
for a lower run number or a previous calibration attempt) with the ones just calculated. It
they differ by too much, the user is prompted to confirm entry into the MAP database.
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4.3 Counter status

When analysing data more useful information can be extracted by acknowledging that one
side of a scintillator counter is dead, than by leaving the reconstruction programs to seek
for correlated information for both left and right. Therefore, before proceeding to the
counter by counter calibration, it is important to check and correctly include the counter
status in the map ( SCLAS_PARMS/Maps/SC_CALIBRATIONS.map, subsystem: status,
items: left and right). For the counter status we use the following convention in off-line Map:

“1” - no ADG;
“2” - no TDC;
“3” - no ADC, no TDC (PMT is dead);
“5” - any other reconstruction problem;

To identify the raw (ADC,TDC) response (SC bank level) of each PMT you can use the
program tof calib. The histogram building program is on version control in :
/packages/utilities/sc_calib/atten/tof_calib.c
The usage of the code can be obtained by giving the argument “-h”:

Usage: tof_calib -s# [-n#] -[A] -[c] -[R] -[G] [F-o<outputfile>] inputfile

Options:
-8 Sector number #
-n[#] Process only # of events
-o[filename] HBOOK output file name
-C Checkout mode for left-right offsets
-A Attenuation length histos
-R Raw data histos
-G Geometric Mean histos
-h Print this message

The “tof_calib” program does not require any reconstruction and can be run on raw
data. To determine the status of the counters one should run the program with the map
entries for the status all set to zero, so that historical failures do not bias the current run.
The code outputs only histograms for one sector at a time. With the -R switch, the program
produces a 2-D histogram of the raw TDC and ADC signals versus counter number. For a
given sector N these histogram have numbers 10*N+1 for ADC left, 10*N+2 for ADC right,
10*N+3 for TDC left, 10*N+4 for TDC right. By slicing and projecting these histograms
you can identify the counters where either or both ADCs or TDCs were not working. An
example of the histograms used in analyzing one sector can be seen in Figure 1.

To monitor more complicated reconstruction problems user can use “sc_mon” program,
which is under version control in /packages/utilities/sc_.mon/. The occupancy plots (his-
togram numbers 3001-3006, 3011-3016, 3021-3026 and 3031-3036) give information about
the raw signals without detailing the ADC and TDC signals. The results of track matching
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are best checked using the reconstructed pion vertex times (histograms numbers 501-506)
and reconstructed masses (histograms numbers 401-406) versus scintillator number. These
plots are particularly useful to check proper operation of the counters. The status of recon-
structed hits from the SCR bank versus scintillator number is given in histogram numbers

351-355. These are also useful to determine which information was used for each hit (left,
right, ADC or TDC).

4.4 Left-Right PMT’s time alignment

Establishing the left-right signals time offsets ensures good identification of the hit position
in the scintillator paddle. In this phase we set the rough values of these offsets. Together
with calibrating the effective velocity of the light in the scintillator (described in Section 4.7),
the fine tuning of these time offsets is done. We use the hbooks created with the program
tof_calib using the ’-¢’ switch. The histograms N+6 (where N is the sector number) show
the distribution of TDC left -TDC right with existing calibration offsets. If the offsets
are not correct the distribution is not symmetric (see figure 2 middle). The edges of the
X-projection for each counter (edger, and edger) should be symmetric with respect to zero.
These offsets can be determined using the packages/utilities/sc_calib/atten/tdc_lr.kumac
kumac. The edges of the distribution as determined by the kumac for one example are
shown in Figure 3. The value of left-right offset is then determined as

At = (edger, + edger)/vess (17)

where v, is effective velocity in scintillator material. For this step, we use the nominal
value of 16 cm/ns. 3 This value of At must be added to the effective value of left-right
constant in the Map for this run: SC_.CCALIBRATIONS.map -sdelta_T -ileft_right -t(run).
Once this calibration is done the left right alignment should look like the lower plot in
Fig. 2.

4.5 Energy loss and attenuation length calibration

The next step is to calibrate E/dz in scintillator material and determine the attenuation
length of each counter. This should be done in three steps:

1. Measuring geometric mean of the MIP peak position for every counter. Described in a)
and b) below are two procedures which can be used for this purpose. The first does not use
previous calibrations, but requires the user to make decisions based on the data set. The
second assumes that a reasonable timing calibration is already in place and can be used to
select pions for the energy calibration. The second option is automated and preferred when
it can be used.

3Final adjustment of the position measurement from left and right pmts is obtained by fitting
for veyy and yosrser during the calibration of the effective velocity.
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a) Before good quality processed (cooked) data becomes available, approximate energy
loss calibrations can be accomplished from the raw data. For this use the histogram build-
ing program which is on version control in :
/packages/utilities/sc_calib/atten/tof_calib.c

The usage of the code is described in subsection 4.3. To obtain the positions for the geo-
metric means of MIP in TOF counters, run the program with the “-G” switch on. Since the
ratio of MIPs and highly ionizing particles depends heavily on experimental conditions (e.g.
beam energy, triggers, etc.), the identification of the MIP peaks must be determined judi-
ciously by the user. Gaussian fits can be used in many cases, but are not always satisfactory.
The kumac file packages/utilities/sc_calib/atten/mip.kumac can be used to loop through
and fit the distributions and produce a file with the necessary information (288 lines, one
per counter) arranged in three columns: counter id (100xsector + scint) (int), geometric
mean (float) and sigma of geometric mean (float). To invoke the kumac use the PAW com-
mand ’exe mip [pre]” where the input histogram file names are '[PRE|[SECTOR].hbook,’
where [PRE] is usually the run number and [SECTOR] is the sector number. When this
procedure is complete the fitted histograms should be checked, since the Gaussian function
does not always yield a satisfactory fit to the data.

b) Finding the geometric mean of MIP peak position calibration using cooked data. This
procedure uses loose timing cuts to select pions which are used for the energy loss calibra-
tion. Therefore, preliminary calibrations must already be available, but the procedure is
automatic and more accurate than the one described in a). The programs are under version
control in /packages/utilities/sc_calib/gmean/
The following executables need to be made:

make gmean_cooked (builds histograms).

make hscan_means.exe (converts data from HBOOK to ASCII format);

make min_means_main.exe (fitting routine);
The usage of gmean_cooked can be obtained by executing the program with switch “-h”. The
output of this program is a histogram file* which is used as input to “hscan_means.” First
edit “hscan_meansl” to read the correct histogram file, and then edit “min means mainl”
to use the output of hscan_means.exe. Then execute the following scripts to fit the his-
tograms:

hscan_means1

min_means_mainl
The first program runs quickly, the second takes a few minutes. Each outputs many mes-
sages, indicating scintillators which are dead, or lack of statistics to produce a good fit.
Histograms with poor statistics are indicated by a y? > 10. For these cases, the program
substitutes a default value of 600+600. The latter program exits “normally” with a floating
point exception flag which should be ignored. The result of these operations are several files,
but two of importance. The first is “means.parm” which contains the histogram number,
fitted peak, peak error, x? for fit and the MINUIT status number. Means.parm can be

4An example of such a file “means.hbook” is saved under CVS and can be used for testing.
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used for updating map entries (see below). The second file is “min_means.kumac”. This file
can be used to check the quality of the fits. Run PAW, open the original input histogram
file, and execute this KUMAC file. All fitted histograms will be shown (24 to a page) with
corresponding fits. They are also saved in “means.ps” for printing. An example of a single
fit is shown in Fig. 4.

2. To start the 6E/dz and attenuation length calibration one should check out from CVS
the directory /packages/utilities/sc_calib/atten/, make the executables:

make tof_calib (builds histograms).

make hscan_atten (converts data from HBOOK to ASCII format);

make min_atten (fitting program);
To build the set of histograms required for this calibration, use “tof_calib” and the switch
“A” (about 500,000 events are needed for good statistics):

tof_calib -n500000 -s1 -A -o[output file | [input file]

The switch “s1” creates the histograms for sector one, so the procedure must be repeated
six times, once for each sector. (The program is run once per sector to reduce memory
requirements which are considerable for two dimensional histograms.) When the histograms
are built one should edit the UNIX script file “attenl” and set up relevant links. The fitted
parameters are stored in “min_parm,” which a soft link to a file specified in “attenl.”
This script runs both codes: “hscan_atten” and “min_atten”, and creates PAW kumac and
parameters output files. To visually verify that the calibration was successful, run PAW
and input the hbook file created by tof_calib. The kumac “atten.kumac” will display all fits
on the appropriate scatter plot (24 to a page). For an example of one of the plots see Fig.
3. The plots are also output to atten.ps for printing. After repeating the procedure for all
six sectors, the six .parm files should be merged into a single file (called “atten.parm” for
the purpose of illustration) for further processing.

3. To calculate final values of the constants user should make executable of the
packages/utilities/sc_calib/atten/adc_const.f:

make adc_const
This code combines the results the MIP peaks (“means.parm”) and measured attenuation
(“atten.parm”), described in steps 1 and 2. The user is prompted for the file-names of
geometric mean and attenuation length parameters and output file-names. It will create
the output in the format (columns, from left to right):

counter # - from 1 to 288,

NMIP_ADC(left) - gain balancing constant for all left PMTs;
NMIP_ADCu(left) - uncertainty for gain balancing constant for all left PMTs;
NMIP_ADC(right) - gain balancing constant for all left PMTs;
NMIP_ADCu(right) - uncertainty for gain balancing constant for all left PMTs;
atten_length - attenuation length for all 288 PMTs;

S W=
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7. atten_u - uncertainty of attenuation length for all 288 PMTs;

These constants and uncertainties can be put in the map using “awk” command, showed
as example in subsection 4.1. In Fig. 5 we show an example of correctly calibrated atten-
uation length and energy loss constants for counter 15 in sector 3: the distribution should
be symmetric about the origin [1].

Once all these constants are in the map, we recommend the calibration be checked by
using the programs described in Section 6. For example, in Fig. 6 we show the results of
the calibrated energy loss versus momentum for all particles. One can clearly see the proton
and pion bands. It is very important to have a good independent pion identification using
dE/dx to select pions used in the counter-to-counter delay calibration below.

4.6 Time-walk correction constants
4.6.1 Data Taking

The time-walk calibration of the TOF is based on special laser data. Presently, the pro-
cedure of laser data taking is not completely automated, therefore it is left to the care of
TOF experts to provide a good laser data set when the calibration is necessary.

4.6.2 Analysis of Laser Data

The software for obtaining the time-walk correction parameters is located in the cvs repos-
itory at:

/packages/utilities /sc_calib/time_walk

Three main programs are used: make_tw_histos makes the histograms needed for the
fits, hscan converts the histograms into text files readable by minuit, and min main steers
minuit to obtain the fit parameters.

The program make_tw_histos operates on one side of a sector at a time due to the large
size of the two-dimensional histograms it makes. The program displays the following help
message if the -h option is used:

Usage: make_tw_histos [...options...| filel [file2] etc....

Options:
-n[#] Process only # number of events
-o[filename|]  Histogram output file
-s[sector] Sector number
-t[offset] Time offset to get data in range
-1 Produce left histograms
-r Produce right histograms
-h Print this message.
-C Lower cut on laser diode time
-C Upper cut on laser diode time
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The laser diode for each laser provides the reference time. Because the time range of
the histograms is fixed, sometimes the -t offset option is needed to be able to see the data.
The -c and -C options are sometimes needed because the quality of the laser diode timing
signal can be poor; they allow the user to pick a range in time for which the laser diode
timing is usable.

The following is a specific example using the above program. It produces the histograms
for the left pmts in sector 3 of the North Clam Shell using the laser calibration file located
in /work/clas/disk2/toflaser_020366.A00. The arbitrary time offset (20 ns) is determined
to center the data in the histogram window. One should check that data in all plots fall
within the defined range.

make_tw_histos -n2000 -o/work/clas/disk2/tw20366_ns3_l.hbook
-s3 -1 -t20 /work/clas/disk2/toflaser_020366.A00

The name of the output histogram file is arbitrary, but one should make sure it com-
pletely specifies the data it contains (e.g. sector number, right or left side and carriage
location). The location of all detectors is given in Table 3.

Table 3: Location of detectors on the mechanical support structures.

Mechanical Sectors Scintillator
Support Frame Number
Forward Carriage | All Sectors (1-6) 1-23
North Clam Shell | Sectors 3, 4, 5 24-42
South Clam Shell | Sectors 6, 1, 2 24-42
Space Frame All Sectors (1-6) 43-48

The hscan program reads input from a logical file called “hscan_input” and writes to
a file called “hscan_data”. To point “hscan_input” to your data and “hscan_data” to your
desired output file, define symbolic links using the UNIX “In” command:

In -s [histogram file name] hscan_input
In -s [text file name] hscan_data

Similarly, the min_main program reads input from “min_input” and outputs the parameters
of the fits to “min_parm” (extention .parm), a kumac for visually checking the quality
of the fits to “min_kumac” (extension .kumac), and the minuit output (containing more
information on the results of the fits, including error matrices) to “min_output”.

The output parameters are in the .parm file. There must be two such files for each de-
tector, corresponding to right and left pmts. After they have been generated, it is necessary
to check them for
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e missing detectors: if a detector is missing the corresponding row on the .parm file
will be missing. Copy the data of the next (or previous) detector into this row.

e total number of counters: each .parm will contain a specific number of rows depending
on the support structure of CLAS; e.g. for Space Frame each .parm will contain 6
rows corresponding to the detectors 43 to 48.

Once files have been produced for all six sectors, the files for each side should be concate-
nated into a single file. The result will be two files with 288 rows, one for the right and the
other for the left. Each row contains the pmt id and fitted time-walk parameters. We note
that the offset (first fitted parameter) is arbitrary. It is necessary for fitting the data, but
not used during analysis. The fitted parameters were obtained for the ADC range between
0 and 8100 counts and typical values are w, ~50 (depends on the PMT), wy ~15 ns and
wsz ~0.07, with a strong correlation between the last two parameters. The columns of the
file contain the following information:

Table 4: Definition of columns in .parm time-walk paramter file. The item (left/right)
depends on which file is used. See Eqn (2) for definitions.

Column Number Definition Map Subsystem | Map Item
1 100*sector + scint # unused
2 offset unused
3 Wy WALK1 left /right
4 w3 WALK?2 left /right
5 W WALK_AQ left /right
6 offset error unused
7 Wy €ITor WALK1u left /right
8 W3 error WALK?2u left /right
9 W error WALKOu left /right
10 Chisquare for Fit unused
11 Fit Status unused

4.7 Effective velocity calibration

The position of the hit along the length of the scintillator, 3, can be determined using the
timing information in right and left tubes using Eq. 7. Using a sample of fitted tracks, we
can determine the position y from tracking. Therefore, a fit to the time difference between
right and left tubes versus y can be used to determine the constants y,;fse; and vesy for
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each scintillator counter. This procedure is accomplished using the program veff described
next.

To measure the effective velocity, we use cooked data since fairly good quality tracking
is required. The software for building and fitting the histograms needed to measure the
average effective velocity for each paddle is in the cvs repository at:

/packages/utilities/sc_calib/veff
The -h option prints out the following help message:

Usage: veff_calib [-n] [-0] filel [file2] etc....

Options:
-n[#] Process only # number of events
-o[filename|]  Histogram output file
-s[#] Sector number (1-6)
-1 Batch mode, no counter
-h Print this message.

To fit the histograms produced by this program, the hscan_veff program needs to be
run to create a text input file readable by minuit. The program min_veff performs the fits
and outputs a parameter file with six columns: histogram id, time offset, effective velocity
(cm/ns), error on the time offset, error on the effective velocity, x?/ndf of the fit, and minuit
fit status. The effective velocities can be placed in the map using the awk unix command.

If the fitting procedure is biased due to background hits in the distribution, then the
variable wmin in the program hscan veff.f can be increased (from its default value of 2) to
optimize background rejection.

4.8 RF offset calibration

To have an acceptable TOF calibration for a long run and a large data sample, the RF
offset must be adjusted throughout the run period. At the beginning of a new run period
and beam energy, the RF phase changes so new offsets must be determined.

We first describe the parameters for the RF calibration used for all run periods. To be
definite, we use the electron-beam program rf_mon. However, the procedures to obtain the
parameters rely on different programs for electron and photon beams, which are described
in sections a) an b) following. The RF calibration subdivides the RF time into four non-
overlapping intervals. The RF correction is then defined by a third degree polynomial over
each interval (F1, F2, F3 and F4). The “good” RF for a given run uses either RF1 or RF2,
but not the other. The choice of RF1 or RF2 is selected using the calibration status word.
All calibration constants are stored in RF_OFFSETS.map in CLAS_ PARMS/Map area.
There are two steps in RF offset calibration: building “good” RF from RF1 or RF2, and
the measurement of the RF offset relative to the “good” RF.

e Building the “good” RF:
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- set the limits for all functions (low and high) arbitrary, but they should cover all RF time
range (100 ns) and not overlap;

- set all parameters of F1, F2, F3, F4 to zero (p0, pl, p2 and p3), choose RF1 or RF2 filling
the “status” (“1” for RF1, “2” for RF2 ). Goal of this is to obtain RF time without any
correction ;

- run rf_mon and determine regions for every function (non-overlapping), set functions limits
properly in the map, fit the distributions for every function and put the value of parameters
in the map;

e Measurement of RF offset. This step will need to be repeated after the counter-to-counter
calibration is performed (next step):
- run rf_mon, verify that “good” RF is built properly, measure RF offset.

a. Electron beam data code. The code used for the RF offset calibration is “rf_mon.c”.
It is under CVS version control in : /packages/utilities/rf_mon/rf_mon.c

The program calculates the RF correction and the target RF correction on an event-
by-event basis, and creates two output files: HBOOK and text. The HBOOK file includes
ten histograms. The most important ones are the RF correction for the TOF vertex time
together with the correction on target length (ID 102) and RF correction versus “good” RF
(ID 103), Fig. 7. The RF correction should be distributed around zero and there should be
no systematic dependence on the RF time. The program fits the RF correction histogram
with a Gaussian. The mean value of the distribution is RF offset. The text output file
contains the run number and the RF offset for the run. The usage of the program can be
obtained by using command line switch “-h”:

Usage: rf_mon [-n#] [-s] [-o<outputfile>] inputfile

Options:
-n[#] Process only # of events
-8 Silent mode

-o[filename] HBOOK output file name [default: run# _rf.hbk]
[text output is setup by default: run# rf.txt]

-a Append text output to rf_mon.txt file
-R Rebuild PID banks;
-h Print this message.

The new calculated RF offset should be added to the previous map entry, which was
effectively in the map during running the code, and the resulting offset should be written
in the RF_OFFSETS.map:

put_map _float -mRF_OFFSETS.map -soffset -ivalue -t1000 < offset.dat
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b. Photon beam data code. This step is performed during the tagger calibration
before the TOF calibration is started.

4.9 Counter-to-counter delay calibration
4.9.1 Electron-beam running

Calibration code: This program should be used when TOF counter are calibrated
from scratch. In order to calibrate the time offsets for different paddles one needs to run
the program p2p_delay_el in packages/utilities/sc_calib/p2p_delay_el/ on CVS. In
order to get a copy of the program one must simply type:

cvs checkout p2p_delay_el
then change directory to p2p_delay_el by c¢d p2p_delay_el and type in:

setenv PHY_DIR ‘pwd‘

setup root/2.23 ( there is no need for this if it has already be set up )

make
which will create an executable p2p_delay_el in the bin/SunOS subdirectory.

The calibration program runs with a configuration file. An example of that file calib.conf
comes with the source in the main directory of the the package. The parameters that should
be set in the config file are the following:

set inputfile = FileName
(name of the file containing banks needed for calibrations )

set rootfile = FileName (name of the histogram file in Root format )

set events = Numberl (number of events from each input file )

set update = Number2 (number of events after which the program reports number
of events processed ).

There may be more than one cooked file. The program will process Numberl events from
each file.
To run the program one should go to bin/SunOS subdirectory and type:

p2p_delay_el -cConfigFileName
Notice that there is no space between -c and ConfigFileName, where ConfigFileName is
the name of the config file mentioned above. The offsets are recorded in the constants.dat
file in plain text format. The constants that should go into the map are in column
“DelaydMap”. One must make sure that constants in the map has not been changed since
the time when the raw data was processed for calibration. Also it is very important to
have CLAS_PARMS variable set to the same value as when cooking the files for
calibration.

Monitoring code: This code was created for fast monitoring of the most important
results of TOF calibration and for being executed during data “cooking” (for detailed mon-

itoring see Section 7). The code is located under CVS in:

/packages/utilities /sc_calib/sc_delay_el/sc_delay_el.c
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4.9.2 Photon-beam running

Because the source for the start time for the event is different for photon beam running
than for electron beam running, the calibration software is different. For photon running
the counter-to-counter calibration software is in /packages/utilities/sc_calib/p2p_delay ph/
Two C programs are involved in the calibration procedure: hist_offsets makes the histograms
needed for determining the time offsets and fit_offsets fits these histograms. Command line
options for hist_offsets are listed below. You can obtain this help information with the -h
option.

Usage: hist_offsets [-M] filel [file2] etc....

Options:
-M[#] Process only # number of events
-o[hbook file] HBOOK file name
-R Regenerate the SC, CC and TBID banks
-h Print this messages.

Command line options for fit_offsets are listed below.

Usage: fit_offsets -p[parmfile] -r[runno] hbookfile

Options:
-p[parmfile]  Parameter file name
-r[runnoj Current run number
-h Print this message.

The -r command line argument is required because the offsets calculated by the fitting
routines are relative to what is already present in the map. The program creates a parameter
file parmfile containing the sector, the scintillator number, the mean time and error on the
mean, the sigma and error on the sigma, the new offset and its error, and the x? of the
fit. Similar information is provided for the six start counter tubes, but usage of these
offsets is not currently recommended. In order to fascilitate putting the numbers in the
map, the program also creates two other files called parmfile.tof and parmfile.start. The file
parmfile.tof consists of two columns of 288 numbers: the first column is the set of counter-
to-counter constants that should be put in subsystem delta_T item paddle2paddle in the
map, and the second column consists of the errors (as determined by the fits) on these
numbers to be put in subsystem delta_Tu item paddle2paddle. The fit_offsets code forces
the average of all the counter-to-counter offsets to be zero. This means that the relative
timing between the tagger and the time-of-flight needs to be checked; the tag2tof calibration
constant relating the two detector systems may need to be changed. The tag2tof number
is stored in the TAG_CALIB map. The program photon_mon (described below) provides
histogram 109 for checking this number.
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5 Geometry constants

The survey data of the carriages and TOF counters is used to determine the positions of
each TOF scintillator relative every other counter and to the CLAS target. A detailed
description of how to manipulate the survey data into the geometry map constants can be
found in Ref. [5].

6 Monitoring the quality of calibration

The monitoring of the TOF scintillators and raw data is accomplished using the program
“sc_mon,” which produces an HBOOK output file with many diagnostic histograms. For
monitoring the quality of the TOF calibration, we use “pid_ mon.” It requires reconstructed
time-based tracks. To obtain help on using “pid_mon” and “sc_mon” programs use the “-h”
argument.

The program “photon_mon” is intended for monitoring the quality of the reconstruction
for photon-beam running. The source code is in the cvs repository at:

/packages/utilities/photon_mon/

Further monitoring of the data with electron beams can be accomplished with “sc_delay_el.”
The source for “sc_delay_el” is in the cvs repository at:

/packages/utilities/sc_calib/sc_delay_el/
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A Time-of-flight reconstruction

While the Time-of-flight reconstruction is not the central to the issue of calibration,
these procedures are the ones that utilize the constants and as such are of interest to show
how the constants are used. For this reason, we include here a few relevant sections of
Simon Taylor’s thesis for reference.

The Time-of-flight reconstruction code reports the time and energy deposition for each
hit in the scintillator array. The raw ADC and TDC information for each struck scintillator
in each event is stored in the SC bank. Each “hit” consists of a number identifying the
scintillator and the ADC and TDC information for both the left side and the right side of
the paddle. The reconstruction algorithm for the time-of-flight comprises four main steps.

A.1 Initialization

At the beginning of the run the calibration constants are read from the Map database
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and stored in global memory. The map file is SC_.CALIBRATIONS.map and is located in
$CLAS_PARMS/Maps.

A.2 Construction of the SC1 banks

The SC1 bank contains those hits in the SC bank that have valid timing information.
Those hits that have no useful TDC values on either side of the paddle are discarded.

The data remains separated between left and right tubes for each hit but the TDC
values are converted to time units (ns) and the ADC values are converted to energy units
(MeV). The conversion for the ADC values is

_ 10(A-P)

E= MeV, (18)

ANmIP
where A is the ADC value of the hit in channels, P is the pedestal, and Anarp is the
pedestal-subtracted ADC value corresponding to a normally incident minimum ionizing
particle (NMIP), which deposits 10 MeV in the scintillator material. The TDC values are
converted to nanoseconds and corrected for slewing according to

T:CO+Clt+Cgt2+tw(A,P), (19)

where ¢ is the TDC value in channels, ¢y is a constant that relates the timing of each of the
time-of-flight channels to each other, ¢; is the conversion factor between TDC channels and
nanoseconds, cg is a small constant that accounts for the nonlinearity of the TDC and ¢,
is a correction dependent on the pulse height:

600 A-P
PR _ 2 7). 20
W fz<w
— w3 °
fuw(z) = { 21:%3 (1 +ws3) — wfgg’_?;l if £ > w,

Vr is the discriminator threshold in ADC channels. The time-walk correction is set to zero
for ADC zeroes or overflows or TDC zeroes or overflows. The time T is set to the error
value of 100000.0 for TDC overflows or -100000.0 for TDC underflows.

A.3 Construction of the SCR banks

During the construction of the SCR bank, information from both sides of each paddle
with an entry in the SC1 bank is combined to form the best timing, energy and position
information for the hit. If good timing values for both sides of a given struck scintillator
are found, the time of the hit is determined by

_Tp+Tp  vr—vL

T
2 2’UL’UR

; (21)
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where T7, (Tr) is the walk-corrected time in ns for the left (right) tube and vz, (vg) is the
speed of light propagation toward the left (right) tube. The position of the hit along the
scintillator relative to the center of the paddle is given by
vpvg(Ty — TR)
y = LUREL —TR) (22)
vy, + VR

The propagation speeds vy, and vg could in principle be different, in which case the time
of the hit would depend on the position of the hit along the bar, but in practice a single
average value is measured and the position dependence cancels. If both left and right ADCs
are present and within range for a given paddle, the energy deposition is determined by

Ap—A
B =\ B Ege’ 0n (23)

where Er, and Eg are the pedestal-corrected ADC values in units of MeV from the SC1
bank, y is the position along the length of the paddle relative to the center of the paddle,
and Ag (Ap) is the attenuation length for light propagation to the right (left) tube. In the
case where only the left ADC is present and valid, the energy deposition is given by

E = Epe v/, (24)

In the case where only the left TDC is valid, the time is given by

T=T1,- 2. (25)

UR
Analogous equations hold for the case where only the right ADC or TDC is valid. By
default, the code tries to use tracking information to find y. If this fails, and both ADCs
are present for the given hit, then the position can be calculated rather crudely according

tor ALA E
LAR I
=———" In{—). 26
y )\L-l-)\Rn(ER) (26)

Errors are computed for the time, the energy deposition, and the y-position of each hit.
A status word is set according to table 5 depending on the quality of the hit, 15 being
best, 1 and 4 being worst.

A.4 Construction of the SCRC banks

The SCRC bank takes individual hits in the SCR bank and looks for clusters in which
adjacent hits arise from a single particle depositing energy in two scintillators. The clusters
are chosen based on overlap in space and time. If the difference in times or positions is
less than three times the uncertainties in the differences, then the two hits in the adjacent
counters are considered to be one cluster. If three consecutive counters fire in a given event,
then the adjacent pair that are better matched in space and time are clusterized; the other
scintillator information enters the SCRC bank as a single hit. If a cluster is found, the
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Meaning
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energies of the two hits are added together to form the “cluster energy” and the time is
computed from an energy-weighted average of the two hits forming the cluster. The x- and
z-positions are simple averages of the individual hit positions. The y-position (along the
length of the bar) is an energy-weighted average. If no cluster is found, the SCRC status
word is the same as the SCR status word and the i.d. is the same as the SCR i.d.; otherwise,
the SCRC status word is the sum of the status word for the first hit in the cluster and 100
times the status word for the second hit in the cluster. The i.d. is the SCR i.d. for the first

hit in the cluster.

Left TDC present; no right tube data.

Left ADC present; hit discarded.

Left ADC and TDC present; no right tube data.

Right TDC present; no left tube data.

Both TDCs present, no ADC information

Left ADC, right TDC present

Left ADC and TDC, right TDC present but no right ADC
Right ADC present; hit discarded.

Left TDC, right ADC present

Both ADCs present; no TDC information; hit discarded.
Both ADCs present, left TDC present, no right TDC
Right TDC and ADC only; no left tube data.

Both TDCs present; right ADC present; left ADC missing.
Both ADCs present, right TDC present; left TDC missing.
Complete set: left TDC, ADC; right TDC, ADC

Table 5: SCR status word definition.

B The SC calibration map

Subsystem: NMIP_ADC, nitems: 2

Item:
Item:
Subsystem:
Item:
Item:
Subsystem:
Item:
Item:

left,

length: 288, type: float, narray:22

right, length: 288, type: float, narray:22
NMIP_ADCu, nitems: 2

left,

length: 288, type: float, narray:18

right, length: 288, type: float, narray:18
TO_TDC, nitems: 2

left,

length: 288, type: float, narray:15

right, length: 288, type: float, narray:15
Subsystem: TO_TDCu, nitems: 2
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Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

Item:
Item:

Subsystem:

left, length: 288, type:
right, length: 288, type:
Ti, nitems: 2

left, length: 288, type:
right, length: 288, type:
Tiu, nitems: 2

left, length: 288, type:
right, length: 288, type:
T2, nitems: 2

left, length: 288, type:
right, length: 288, type:
T2u, nitems: 2

left, length: 288, type:
right, length: 288, type:
T_sigma, nitems: 2
first_param, length: 288,
second_param, length: 288,
WALKOu, nitems: 2

left, length: 288, type:
right, length: 288, type:
WALK1, nitems: 2

left, length: 288, type:

right, length: 288, type:
WALK1u, nitems: 2

left, length: 288, type:

right, length: 288, type:
WALK2, nitems: 2

left, length: 288, type:

right, length: 288, type:
WALK2u, nitems: 2

left, length: 288, type:

right, length: 288, type:
WALK_AO, nitems: 2

left, length: 288, type:

right, length: 288, type:
atten_length, nitems: 2
left, length: 288, type:

right, length: 288, type:
atten_u, nitems: 2

left, length: 288, type:

right, length: 288, type:
delta_T, nitems: 4
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float,
float,

float,
float,

float,
float,

float,
float,

float,
float,

type:
type:

float,
float,

float,
float,

float,
float,

float,
float,

float,
float,

float,
float,

float,
float,

float,
float,

narray:
narray:

narray:
114

narray

narray:
narray:

narray

narray:

narray:
narray:

float,
float,

narray:
narray:

narray:
narray:

narray:
narray:

narray:
narray:

narray:
narray:

narray:
narray:

narray:
narray:

narray

narray:

14
14

14

14
14

114

14

14
14

narray:0
narray:0

19
19

:19

19



Item: dc2sc, length: 24, type: float, narray:1

Item: left_right, length: 288, type: float, narray:31

Item: paddle2paddle, length: 288, type: float, narray:72

Item: panel2panel, length: 24, type: float, narray:8
Subsystem: delta_Tu, nitems: 3

Item: left_right, length: 288, type: float, narray:4

Item: paddle2paddle, length: 288, type: float, narray:72

Item: panel2panel, length: 24, type: float, narray:8
Subsystem: pedestals, nitems: 2

Item: left, length: 288, type: float, narray:34

Item: right, length: 288, type: float, narray:34
Subsystem: pedu, nitems: 2

Item: left, length: 288, type: float, narray:25

Item: right, length: 288, type: float, narray:25
Subsystem: pulser, nitems: 1

Item: normalisation, length: 1, type: float, narray:3
Subsystem: status, nitems: 2

Item: left, length: 288, type: int, narray:12

Item: right, length: 288, type: int, narray:12
Subsystem: time_walk, nitems: 1

Item: ref_adc, 1length: 1, type: float, narray:1
Subsystem: veff, nitems: 2

Item: left, length: 288, type: float, narray:4

Item: right, length: 288, type: float, narray:4
Subsystem: veffu, nitems: 2

Item: left, length: 288, type: float, narray:3

Item: right, length: 288, type: float, narray:3

C The SC bank

The DDL definition of the SC bank is

! BANKname BANKtype ! Comments
TABLE SC B16 ! create write display delete
! Scintillation counter event bank
!
! ATTributes:
|

'COL ATT-name FMT Min Max ! Comments
1

1 ID I 1 48 ' the address of the hit detector element

29



2 TDCL I 0 65536 ! tdc information (channels)
3 ADCL I 0 65536 ! adc information (channels)
4 TDCR I 0 65536 ! tdc information (channels)
5 ADCR I 0 65536 ! adc information (channels)
!
! RELations:

!COL RELname RELtype INTbank ! Comments
! (coL)
!

END TABLE
!

The corresponding C data structure is

typedef struct {

uint16 id; /* the address of the hit detector element */
uint16 tdcl; /* tdc information (channels) */
uint16 adcl; /* adc information (channels) */
uint16 tdcr; /* tdc information (channels) */
uint16 adcr; /* adc information (channels) */

} sc_t;

typedef struct {
bankHeader_t bank;
sc_t scl[1];

} clasSC_t;

D The SC1 bank

The DDL definition of the SC1 bank is

! BANKname BANKtype ! Comments
TABLE SC1 ! create write display delete

! Scintillation counter hits bank
!

ATTributes:

!COL ATT-name FMT Min

!
1
2

ID
time_1

I
F

1

Max ! Comments

48 ! the address of the hit detector element

0 100000 ! time for left paddle(mns)
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3 energy.l F O 65536 ! energy in left paddle(MeV)

4 time_r F 0 65536 ! time for right paddle(ns)

5 energy.r F O 65536 ! energy in right paddle(MeV)

6 dtime_1 F 0 65536 ! uncertainty in time for left paddle(ns)
7 denergy_l F 0 65536 ! energy uncertainty for left paddle(MeV)
8 dtime_r F 0 65536 ! uncertainty in time for right paddle(ns)
9 denergy_.r F 0 65536 ! energy uncertainty for right paddle(MeV)
!

! RELations:

!

!

!COL RELname RELtype INTbank ! Comments
(coL)

END TABLE
!

The corresponding C data structure is

typedef struct {

int id; /* the address of the hit detector element */
float time_1; /* time for left paddle(ns) */

float energy_l; /* energy in left paddle(MeV) */

float time_r; /* time for right paddle(ns) */

float energy_r; /* energy in right paddle(MeV) */

float dtime_1; /* uncertainty in time for left paddle(mns) */
float denergy_l; /* uncertainty in energy in left paddle(MeV) */
float dtime_r; /* uncertainty in time for right paddle(ns) */

float denergy_r; /* uncertainty in energy in right paddle(MeV) */
} sci_t;
typedef struct {

bankHeader_t bank;

scl_t sci[i];
} clasSCi_t;

E The SCR bank

The DDL definition of the SCR bank is

! BANKname BANKtype ! Comments
TABLE SCR ! create write display delete

! Sc Scintillator reconstruction hit bank
!
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ATTributes:

1
!

!COL ATT-name FMT Min Max ! Comments

1 id I o0 48 ! paddle id

2 energy F 0 100000.0 ! Energy (MeV)

3 time F 0 100000.0 ! time(ns)

4 X F -999.9 999.9 ! x position in sector coordinate system
5 y F -999.9 999.9 ! y position in sector coordinate system
6 z F -999.9 999.9 ! z position in sector coordinate system
7 dx F -999.9 999.9 ! x error in sector coordinate system

8 dy F -999.9 999.9 ! y error in sector coordinate system

9 dz F -999.9 999.9 ! z error in sector coordinate system

10 status I -999999 999999 ! status word defined in sc.h

11  denergy F 0 100000.0 ! uncertainty in Energy (MeV)

12 dtime F 0 100000.0 ! uncertainty in time (ns)

!

! RELations:

'COL RELname RELtype INTbank ! Comments
! (coL)

!

END TABLE

!

The corresponding C data structure is

typedef struct {

int id; /* paddle id */
float energy; /* Energy (MeV) x*/
float time; /* time(ns) */
vector3_t pos; /* position in sector coodinate system */
vector3_t err; /* error in sector coodinate system */
int status; /* status word defined in sc.h */
float denergy; /* uncertainty in Energy (MeV) */
float dtime; /* uncertainty in time (ns) */
} scr_t;

typedef struct {
bankHeader_t bank;
scr_t scr[i];

} clasSCR_t;
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F The SCRC bank

The DDL definition of the SCRC bank is

! BANKname BANKtype ! Comments

TABLE SCRC ! create write display delete
!Sc Scintillator reconstruction hit bank
!

! ATTributes:
| e ___

!COL ATT-name FMT Min Max ! Comments

1 id I O 48 ! cluster id

2 energy F 0 100000.0 ! cluster Energy (MeV)

3 denergy F 0 100000.0 ! error in cluster energy (mns)

4 time F 0 100000.0 ! cluster (energy-weighted) time(ns)

5 dtime F 0 100000.0 ! error in cluster time (ns)

6 X F -999.9 999.9 ! x position in sector coordinate system
7 y F -999.9 0999.9 ! y position in sector coordinate system
8 z F -999.9 999.9 ! z position in sector coordinate system
9 dx F -999.9 999.9 ! x error in sector coordinate system

10 dy F -999.9 999.9 ! y error in sector coordinate system

11 dz F -999.9 999.9 ! z error in sector coordinate system

12 status I -999999 999999 ! status word defined in sc.h

RELations:

I e

!COL RELname RELtype INTbank ! Comments
! (coL)

!

END TABLE
!

The corresponding C data structure is

typedef struct {

int id; /* cluster id x/

float energy; /* cluster Energy (MeV) =x/

float denergy; /* error in cluster energy (ms) */
float time; /* cluster (energy-weighted) time(ns) */
float dtime; /* error in cluster time (ns) */
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vector3_t pos; /* position in sector coordinate system */

vector3_t err; /* {x,y,z} error in sector coordinate system */
int status; /* status word defined in sc.h */
} scrc_t;

typedef struct {
bankHeader_t bank;
scrc_t scrc[1];

} clasSCRC_t;
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Figure 1: Histograms used in checking the status of the ADC and TDC signals left
and right in the TOF calibration. As one can see the counter 26 is dead. There is a
clear weakness in the TDC left counter 36. For the counters 40-48 higher statistics
might be necessary to make a conclusion about their status.
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Figure 2: An example of left-right aligned counters in sector 5.
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Figure 4: An example of a fit to the geometric mean of the energy loss of minimum-ionizing
particles in the counter.
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Figure 6: Energy loss in scintillator material versus momenta of the particles. Proton and
pion bands are clearly distinguished.
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Figure 7: RF correction and “good” RF versus RF correction after calibration.
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