Conduct of Operations for Hall B CLAS12 Run Group E February 29, 2024 # Contents | 2 Documentation 3 Shift Personnel Training 3.1 On-Site Shift personal Training 3.2 Additional Training 3.3 Off-site Shift Personal Training 4 Organization and Administration 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources 5.4 Scheduling of Work by Outside Groups | 3 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----| | 3.1 On-Site Shift personal Training 3.2 Additional Training 3.3 Off-site Shift Personal Training 4 Organization and Administration 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 3 | | 3.2 Additional Training 3.3 Off-site Shift Personal Training 4 Organization and Administration 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 4 | | 3.3 Off-site Shift Personal Training 4 Organization and Administration 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 4 | | 4 Organization and Administration 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 5 | | 4.1 Run Coordinator 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 5 | | 4.2 Physics Division Liaison 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 5 | | 4.3 Hall Work Coordinator 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 5 | | 4.4 Shift Leader 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 8 | | 4.5 Shift Member 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 9 | | 4.6 Accelerator Operations Hall Liaison 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 9 | | 4.7 Accelerator Physicist Liaison 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 11 | | 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines. 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 11 | | 4.8 Engineering Liaison 5 Operating Procedures 5.1 Shift Routines. 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 11 | | 5.1 Shift Routines | 12 | | 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 12 | | 5.1.1 Operating Shifts 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 12 | | 5.1.2 Standby Shifts 5.1.3 Operations Turnover 5.1.4 Timely Orders to Operators 5.1.5 Operator Aid Postings 5.2 Hall Access 5.3 Collaboration Request for Laboratory Resources | 12 | | 5.1.4 Timely Orders to Operators | 13 | | 5.1.4 Timely Orders to Operators | 13 | | 5.1.5 Operator Aid Postings | 13 | | 5.2 Hall Access | 14 | | 5.3 Collaboration Request for Laboratory Resources | 14 | | | 15 | | | 15 | | 5.5 Control of Equipment and System Status | 16 | | 5.6 Equipment Labeling | 16 | | 5.7 Independent Verification | 16 | | 5.8 Logkeeping | 17 | A Appendix 17 ### 1 Preface As part of its mission, JLab provides the resources necessary for international collaborations of scientists to carry out basic research in nuclear physics and related disciplines. This research must be conducted in a manner that ensures that environmental, health and safety (ES&H) concerns receive the highest consideration. At the same time the programmatic goals of the laboratory require that it produce the highest quality physics results efficiently. Guidance on how to balance thoughtful, measured ES&H concerns with efficient operation has been taken from the Director's Safety Council, the JLab ES&H Manual, and the JLab Director's Office. A graded approach is followed in which the measures taken are matched to the scale, cost, complexity, and hazards of the operation. This document outlines how an approved experiment collaboration will conduct operations in a safe and effective manner during the time period that the CLAS12 Run Group E experiment is on the floor. Installation periods are not covered by this document. Furthermore, this document is directed to physics users and physics staff rather than the Hall B technical staff. It must be read, understood, and followed by all members of the collaboration. The use of Unmanned Aviation Systems (commonly refer to as drones) are not permitted without the Aviation SME permission, in accordance with ESH Manual Chapter 3900 Aviation Implementation Document. The operation of personal owned aircraft either manned or unmanned by JLab Staff, Users, or visitors in support of the Jefferson Laboratory mission or while on Thomas Jefferson National Accelerator Facility is not permitted. ### 2 Documentation This experiment uses the standard Hall B beamline equipment and the CLAS12 setup. All of the procedures to be used during the course of the experiment are contained in the following documents¹: • The Conduct of Operations for Hall B CLAS12 Run Group E (COO); the document you are now reading. ¹The process is documented at http://www.jlab.org/user_resources/PFX - Experiment Safety Assessment Document (ESAD) for CLAS12 Run Group E (referring to the base equipment as well as any experimentspecific changes) - Radiation Safety Assessment Document (RSAD) - JLab Emergency Response Guidelines (ERG) - Hall B Standard Beamline Equipment Manual - Manuals for the CLAS12 Standard Equipment Reference copies of these documents will be available in the Counting House for the duration of the experiment. The present document shall hereafter be referred to as the COO. The Experiment Safety Assessment Document shall hereafter be referred to as the ESAD and the Radiation Safety Assessment Document shall be referred to as the RSAD. The ESAD, RSAD and COO are also available at an experiment-specific web site. The COO, the ESAD and the RSAD are required reading for shift personnel. A full description of the physics motivation for the experiments, collaboration lists, and general plans for carrying out an experiment can be found in the proposal(s) to the JLab Program Advisory Committee (PAC). ## 3 Shift Personnel Training #### 3.1 On-Site Shift personal Training All personnel on shift are required to have successfully completed and be current in the following JLab safety training: - ES&H Orientation (SAF 100) - Radiation Worker Training (SAF 801) - Oxygen Deficiency Hazard Training (SAF 103) - Hall B Safety Awareness Walk-Through (SAF111) All experiment personnel are required to have radiation badges in their possession during their shifts. The Safety Awareness Walk-Through will emphasize hazards that are typical of normal Hall operations. Hazards peculiar to the current experimental setup are addressed in the appendices of this document. In addition, all shift personnel will be trained in the safety procedures to be followed for access to the Hall. This training will include a brief discussion of the purpose and operation of the Personnel Safety System (PSS) for the Hall. Individuals within the collaboration may be required to have other equipment or procedure-specific training. The need for such training shall be determined by the experiment spokespersons in consultation with the Hall Leader and Physics Division Safety Officer. ### 3.2 Additional Training In addition, experiment personnel must familiarize themselves with the sections of the JLab ES&H Manual relevant for their work in the Hall. It is available via http://www.jlab.org/ehs/ehsmanual/index.html. Finally, specific training is required for all staff/users who will be performing maintenance on electrical and mechanical equipment which cannot be physically and verifiably isolated from an energy source. Prior to doing work on a piece of electronics equipment, beyond just plugging it in and turning it on/off, you are required to take Basic Electrical Safety for Electrical Workers (ESC001). This training is required so that you can make a proper hazard assessment of the work you are planning to do on the electrical equipment in question. ### 3.3 Off-site Shift Personal Training Personnel taking shifts from outside JLab must keep all training necessary to maintain JLAB computer account up-to-date. Their access/work to the lab and hall may be precluded depending on the missing training. # 4 Organization and Administration The operation of the experiment is directed by the Spokespersons and the Hall Leader, Patrick Achenbach. An organization chart for the experiment is shown in Figure 1. #### 4.1 Run Coordinator The Run Coordinator is the immediate on-site manager of the experiment and is responsible for ensuring that the physics goals of the experiment Figure 1: Functional organization of the Hall B Team. Dashed lines indicate information flow, solid lines indicate responsibility. are met. This individual is designated by the experiment spokespersons and approved by the Hall Leader. The Run Coordinator shall ensure that the Hall Group Leader, Physics Division Liaison, and at least one Spokesperson are aware of all pertinent issues. The Run Coordinator shall promote an environment in which the highest safety standards are maintained. All Run Coordinators must ensure that all of the JLab training necessary to perform their duties is up to date before their shift as Run Coordinator commences. The functions of the Run Coordinator are: - I. To manage daily operation of the experiment: - to ensure that the run plan is clear to the shift workers. - to define the data quality appropriate for the goals of each shift. - to track the progress of the experiment. - to coordinate and schedule activities (e.g., Hall accesses) in order to optimize productivity. - to ensure that an experiment checklist is completed every 24 hrs during standby shifts. - together with the Physics Division Liaison, to ensure that the Counting House is manned appropriately: i.e., sufficient personnel are present to safely carry out the experimental program or monitor the apparatus as needed. - II. To coordinate interactions between JLab and the experiment. This entails: - to ensure that the Hall B Group Leader and Experiment Spokespeople are aware of all necessary issues. - informing the Program Deputy of the experiment's status and plans at a 7:45 AM program deputy/halls meeting at the Machine Control Center (MCC) during the working week, and at an agreed upon time on weekends or holidays. - representing the collaboration at the 8:00 AM daily summary meeting at the MCC conference room during the work week. - attending the 1:30 PM Wednesday scheduling meeting at the MCC conference room to represent the collaboration and to present a report on the preceding week. - remaining in the local area and being available by cell-phone at all times. (If temporarily unavailable the Run Coordinator must designate another qualified collaborator as a replacement.) - interact with the Accelerator Program Deputy to plan and conduct unscheduled activities. - in conjunction with the Hall Work Coordinator, scheduling work by groups outside the collaboration. This work will normally coincide with the scheduled machine maintenance days. This coordination requires a weekly meeting of these two individuals. The product of this meeting will include any necessary updates to the "Access Authorization List". - to be responsible for safe transition of the Hall to Restricted Access in coordination with the Hall Work Coordinator. - to provide an oral report at the weekly Hall B meeting² updating the experimental progress to the collaboration. - III. To submit a written report to Patrick Achenbach that includes run time statistics and a description of any significant problems with the Hall instrumentation. #### 4.2 Physics Division Liaison Broadly speaking, the Physics Division Liaison to the experiment is a Hall B staff member selected by Patrick Achenbach to oversee the Hall's interests with respect to personnel and equipment protection.³ This is true for all three halls. However, the role of the Physics Division Liaison may include other responsibilities depending upon the experiment and other factors. His/her responsibilities include: - Oversee that proper rules of safety are carefully followed in the conduct of the experiment. - Approve a Hall status change to Restricted Access in coordination with the Hall Work Coordinator. - Training verification of shift workers via JList software. ²typically held at 9:00am on Monday. $^{^3}$ The responsibilities described here correspond to those of the Physics Division Liaison during the operating phase of the experiment as outlined in the ES&H Manual Chapter 3120/Glossary. • Together with the Run Coordinator, ensure that the Counting House is staffed appropriately: i.e., sufficient personnel are present to safely carry out the experimental program or monitor the apparatus as needed. #### 4.3 Hall Work Coordinator The Hall Work Coordinator's responsibilities are: - to act as the single point of contact for all work in the Hall. - to determine if the scheduled activities in the Hall can be done safely. These activities shall be coordinated with the Physics Division Liaison and the Run Coordinator. Tasks should also be inputted into the work task lists http://www.jlab.org/listsites/. - to ensure that workers are properly trained, are familiar with all significant hazards, and are aware of all applicable work control documents associated with the project. - in coordination with the Physics Division Liaison, ensure that the Hall apparatus is made safe before giving permission to make a transition to Restricted Access (e.g., turn off unused magnets, install protective shields as needed, fulfill specific requirements in the ESAD, etc.). #### 4.4 Shift Leader Each shift is led by a Shift Leader. The selection of shift leaders is the responsibility of the Run Coordinator and Physics Division Liaison. The Shift Leader has the following responsibilities: - to carry out the scientific program planned for the shift in a safe and efficient manner. - to ensure that the logbook contains a complete and accurate description of the events and actions that occurred during the shift. - to serve as primary contact between MCC and the experiment personnel. - to oversee that Hall equipment is operated properly. - to ensure the shift checklist is performed every eight hours on operating shifts. - to ensure that equipment malfunctions are properly labeled and lockedout if necessary and to communicate this to shift personnel and subsystem experts. - to note in the logbook when workers from outside groups (such as survey and alignment) stop by the Counting House before entering the Hall when in Controlled Access. Furthermore, to confirm that these workers have communicated with the Run Coordinator and the Hall Work Coordinator. - to coordinate the response of the shift crew to any emergency situation, including the notification of appropriate individuals as outlined in the Hall B Emergency Response Guidelines (ERG). - to ensure that in any emergency situation the experiment Physics Division Liaison, Run Coordinator, MCC Crew Chief, and Hall Leader are notified immediately. - to notify the Run Coordinator and the Hall Leader, if the Hall is down due to equipment failure for more than four hours. The Shift Leader has the following authority: - to assign tasks to the shift members as needed. - to request that the state of the Hall be changed. (Request for a change to Restricted Access must be approved by the Physics Division Liaison.) - to limit the number of people in the Counting House or Hall if required to effectively and safely carry out the experiment. - to limit access to Hall on-line computers if required to effectively and safely carry out the experiment. - to authorize qualified personnel to make modifications in the experiment configuration within the allowed parameters, as specified in the standard equipment manual. - to authorize time accounting for the shift. #### 4.5 Shift Member The responsibilities of each shift member are to: - carry out the scientific goals of the shift in a safe and efficient manner under direction of the Shift Leader. - read the logbook to be aware of changes in goals, operating parameters, and new documentation. - monitor the equipment for problems. - maintain adequate records of the progress of the shift. - be present before the start of each shift and coordinate current operating conditions with the previous shift. - keep all training up-to-date. ### 4.6 Accelerator Operations Hall Liaison Each physics Hall has an Accelerator Operator or Crew Chief assigned as a Hall Liaison. The Hall Liaison helps to facilitate information exchange between the experimenters and the MCC Operations Group, both in advance of and during actual experiments. The Hall Liaison, among other things, is responsible for making sure that experiment-specific information, procedures and requirements are available to all other operators and Crew Chiefs so that beam delivery can proceed efficiently. The Hall B liaison is Katheryne Price. ### 4.7 Accelerator Physicist Liaison The Accelerator Physicist Experiment Liaison serves as the primary contact on Hall beam physics issues for the Physics, Accelerator and Engineering Divisions. This liaison owns the process of establishing physics quality beam to the experiment including developing beam optics configurations capable of meeting the experiments requirements, identifying tools needed to diagnose, monitor and verify beam performance during the experiment as well as developing beam startup, setup and commissioning plans. The Hall B liaison is Michael Tiefenback. ### 4.8 Engineering Liaison Each experiment conducted at JLab will be evaluated to determine if its complexity requires facilitation with the Engineering Division to help ensure a successful outcome. Experiments that require facilitation will be assigned an individual from the Engineering Division to act as liaison between the Division and the associated Experimental and Physics Division staff. The liaison acts as a single point contact in order to facilitate information exchange between the experimenters and those in the Engineering Division responsible for, but not limited to, the systems requirements, design, scheduling, fabrication, installation, testing, documentation, and budgeting. Ideally, the liaison is aware of all work conducted by Engineering for the experiment and ensures the appropriate resources are defined and allocated. Any issues and/or concerns are identified, documented, and tracked. For the current run period, the review found that no such liaison was required. ### 5 Operating Procedures #### 5.1 Shift Routines There are two types of shifts for active Hall experiments: Operating and Standby. Operating shifts are the normal status when beam is available for the experiment. Standby shifts are periods designated by the Run Coordinator when beam is not available or not in use in the Hall and none of the equipment requires continuous monitoring. Standby status may result from normal operational planning or from abnormal conditions such as a major down time due to equipment failure. #### 5.1.1 Operating Shifts During operating shifts, 24 hour occupation of the Counting House area will be maintained by crews of at least two persons ⁴ in 8 hour shifts. One person per shift is designated as the Shift Leader. The number of persons assigned to a shift will depend on the tasks assigned during the shift. A shift schedule will be available on-line and posted in the Counting House listing the times and names of personnel on ⁴The readiness review committee may require more personnel depending on the complexity of the experiment. Two people are the minimum required for safe operations. shift and identifying the Shift Leader and Run Coordinator, cell (757) 575-7540. The Run Coordinator may also designate and supervise other teams for duties such as offline analysis. #### 5.1.2 Standby Shifts During Standby shifts, shift personnel are not required to be on site at JLab but must be available through telephone contact to come in if they are needed. Monitoring the target system can require the presence of a Target Operator during a standby shift. The Target Operator then also acts as Shift Leader. The Run Coordinator will ensure that the shift checklist is executed at least once every 24 hours. #### 5.1.3 Operations Turnover The electronic logbook, accessible from the web, is a very effective means of remotely obtaining information about experimental operations. This allows experimenters to log in remotely and view all logbook entries prior to commencing their shift. Information that can only be recorded in the paper logbook, should be noted accordingly, point to in the electronic logbook, and communicated between incoming and outgoing shift personnel directly. Efficient and effective shift changeovers during experiment operation are enhanced by overlapping shifts. Therefore, whenever possible, Shift Leaders and Workers are scheduled in shifts that are staggered by at least one hour. If this is not the case, shift members must show up ten minutes prior to shift start (and plan to stay ten minutes after) for the purpose of information exchange to those taking over the same tasks. In all cases incoming Shift Leaders must discuss the experiment and Hall status with the outgoing Shift Leaders. #### 5.1.4 Timely Orders to Operators The initial run plan is the responsibility of the Run Coordinator and shall be clearly recorded on the experiment run page and in the logbook. This plan specifies the tasks to be performed in the next 48 - 72 hours, including any special conditions or data runs, updated documentation and its location and/or alternate plans. Any changes to the run plan shall be recorded on the run page, in the logbook and on the white board in the Counting House. #### 5.1.5 Operator Aid Postings The day-to-day schedule, contact instructions for key personnel, and any other information relevant to current activities are located on the white board in the Counting House. Shift personnel should consult the white board, especially at the beginning of their shift, to be aware of any updates to current running conditions. Information pertaining to daily activities in Hall B must be posted on the bulletin board or written on the white board at the entrance to the Hall. ### 5.2 Hall Access Work in designated radiation areas will be carried out in accordance with the JLab RadCon Manual. In particular, no material may be removed from the hall after beam delivery without proper approval from the RadCon Group. During operations, no one is allowed in the hall without either being accompanied, or informing shift personnel and checking in on a regular basis. During a running experiment the hall will normally be in Beam Permit. When temporary access to the Hall is needed the Shift Leader can ask the MCC to bring the Hall to Controlled Access. If long term access to the Hall is required, the Shift Leader may request the Hall be brought to Restricted Access. Such a request requires prior approval from the Physics Division Liaison, while the actual transition will be supervised by the Hall Work Coordinator. Restricted Access is a state where delivery of beam and/or RF power is not permitted, and entry to and exit from the Hall is not controlled by the Personnel Safety System. This is the normal state of the Hall when the accelerator is off and no experiments are running. Access is "restricted" only in the sense that the Hall is not open to the general public. Well-defined check-list procedures are to be followed whenever the Hall is brought to and from Restricted Access. Restricted Access is the period when all major work must be completed in the Hall. Consequently, all activities require advanced planning and must be scheduled for resources and safe operation. In order to streamline the activities in the Hall and ensure everyone has ready access to the current status and requirements for work, there are two important resources: - Single point of contact, which is the "Hall Work Coordinator" - Information board at the entrance to the Hall All work must be scheduled through the Hall Work Coordinator. The content on the information board is the responsibility of the Hall Safety Wardens and the Hall Work Coordinator. The information board will contain all critical information required for safe entry into the Hall. This information will include a succinct, one page safety summary covering the Hall's current safety hazards and mitigating measures (to be read by all persons working in the Hall), active Operational Safety Procedures (OSPs) and Temporary Operational Safety Procedures (TOSPs), HBLists and Permit to Work (PTW), required temporary work permits (e.g., Radiation Work Permits), current activities in the Hall, points of contact, and required training and safety equipment. ### 5.3 Collaboration Request for Laboratory Resources The collaboration may request additional services from Accelerator Division through the Accelerator Division Liaison, Katheryne Price. Alternatively, the collaboration may also request additional services from Hall personnel through the Physics Division Liaison, Nathan Baltzell. These requests should be noted in the logbook. Some requests may require that an OSP or TOSP be developed. Major, unusual, or unanticipated configuration modifications such as stacking or movement of significant shielding, unanticipated vacuum work, unanticipated beam line modifications, the replacement of a wire chamber, etc., require approval of the Hall B Leader, Patrick Achenbach ⁵, and the use of appropriate personnel. The Hall Leader may require that a OSP or TOSP HBList or PTW be prepared. ### 5.4 Scheduling of Work by Outside Groups Work in the Hall that is to be performed by groups outside the collaboration such as survey and alignment, plant services, air conditioning, etc., must be scheduled so that it does not endanger personnel or equipment or interfere with the experiment. Non-emergency activities by these groups should be scheduled to coincide with the planned accelerator maintenance periods. To maximize efficiency, the Run Coordinator (representing the collaboration) and the Hall Work Coordinator (representing Hall B) will concur ⁵Configuration changes as outlined above can affect site boundary dose and the production of airborne radioactivity. They require consulting with RadCon or ES&H personnel, as appropriate. on work scheduling. The Hall Work Coordinator's job is to coordinate activities in the Hall so that work can take place smoothly and safely and to insure that multiple activities do not interfere. The Work Coordinator and the Run Coordinator will meet as needed to plan the work scheduled for the upcoming maintenance period. The product of this meeting will be a list of work in the Hall, the required access state of the Hall (Controlled or Restricted), appropriate work control documents, and educational or other safety measures (such as escorts) that are needed. The ATLis should be used for coordinating the cross divisional work activities http://www.jlab.org/listsites/. ### 5.5 Control of Equipment and System Status The operation of the standard experimental equipment is documented in the Hall B Standard Equipment Manuals. This document includes information on the normal response to alarms and equipment malfunctions. The ESAD and Hall B Standard Equipment Manual lists the authorized subsystem experts. This list may be amended as necessary to reflect personnel and training changes with the authorization of the subsystem expert. A copy of these amendments will be attached to the main document and kept in the Counting House. All general equipment installation, maintenance, and testing activities are to be carried out in accordance with the JLab ES&H Manual. ### 5.6 Equipment Labeling The experiment and Hall equipment shall be properly labeled so it can be quickly identified by both shift and maintenance personnel. Proper labeling helps prevent incorrect operation or modification of equipment by non-experts and facilitates proper and efficient operation by qualified personnel. Labeling also increases the likelihood that proper procedures will be followed in case of emergency. Improper labels should be corrected immediately if possible. Otherwise, the Shift Leader should be notified so that correct labeling can be requested from the qualified expert. ### 5.7 Independent Verification The Run Coordinator will provide the shift crew with a set of measures for checking the quality of the experimental data. The up-to-date Hall B shift checklist (and instructions) shall be made available to shift personnel at Hall-specific sites on the data acquisition computers. The checklist will be completed at least once per shift during operating shifts and once per day during standby shifts. Additional items may be added to the list by the Run Coordinator or subsystem experts. The Hall-B equipment checkout for readiness to beam run is tied to Accelerator Hot Checkout (HCO) system. The Hall B Work Coordinator oversees readiness of the experimental Hall for closing and conditions when the Hall is used as an accelerator beam dump. ### 5.8 Logkeeping Shift personnel will update the electronic logbook, which serves as the record of the experiment. The quality of the information recorded in the logbook determines the utility of the data. All data recorded electronically will be referenced in the computer logbook with the appropriate run number and run information. All relevant activities are to be recorded, including all changes of experiment conditions and equipment failures. Checklists performed using Hall B-specific forms should also be scanned into the computer logbook when completed. The completed paper forms should be stored in a binder in the counting house. All deviations from normal operating parameters shall be recorded in the logbook. The computer logbook will also serve as the primary reference for the determination of the operational efficiency of the experimental apparatus in the Hall. As such it is essential that it provide an accurate record of the capability of the equipment to carry out the intended research program. Finally, the computer logbook is the place of record for all safety issues and introductions of new or updated documentation and procedures. # A Appendix After reading this document, as well as the ESAD, RSAD, and ERG, on-site shift workers must sign the signature sheet located in the "yellow binder" of the experiment specific documents. This binder can be found in the Hall B counting house and in the MCC. Off-site shift takers must acknowledge to the Physics Division Liaison of the experiment, Nathan Baltzell (baltzell@jlab.org), that they have read and understood the COO, ESAD, RSAD and ERG following the procedure implemented by Hall B (e.g. Google Sheets, email, or other). Because (a) on-site and off-site shift takers are subject to different training requirements and (b) the shift-takers signatures are collected and archived for future reference (e.g. to check that shift takers had the required training when on-shift), it is important that the shift taker signs the list corresponding to their shift status (on-site or off-site).