Search for Missing Resonances in γp -> KΛ Using Circularly Polarized Photons on Longitudinally Polarized Target

> Liam Casey Catholic University of America Adviser: Dr. Franz Klein

Motivation – Missing Resonances

•Resonances predicted by constituent quark models not found in πN data.

 Supermultiplets filled consistent with diquark models

•Resonances may couple strongly to strange decay channels: KΛ KΣ.

•D13(1960) question expected to be solved in this analysis.

KA can only involve isospin ½ states and so is expected to couple to few resonances.

Finding the resonance in the KA channel should be relatively simple.

Introduction – Polarization Observables

Photon beam		Target			Recoil			Target + Recoil			
					<i>x'</i>	y'	z'	<i>x'</i>	<i>x'</i>	y'	z'
		x	у	Z				x	Z	x	z
unpolarized γ	σ_0		T	99-19-19-19-19-19-19- 19-19-19-19-19-19-19-19-19-19-19-19-19-1		P	~~~~	T _{x'}	$-L_{x'}$	Tzʻ	L _z ,
linearly P_{γ}	Σ	Н	(<i>-P</i>)	-G	<i>O</i> _{<i>x</i>} ,	(-T)	Oz'	$(-L_{z'})$	(T_z)	$(-L_{x'})$	$(-T_{x'})$
circular P_{γ}		F		-E	-C _x ,		Czʻ				

$$\begin{split} E_z^2 + F_x^2 + G_z^2 + H_x^2 &= 1 + P^2 - \Sigma^2 - T^2 ,\\ F_x G_z - E_z H_x &= P - \Sigma T ,\\ C_x^2 + C_z^2 + O_x^2 + O_z^2 &= 1 + T^2 - P^2 - \Sigma^2 \\ C_z O_x - C_x O_z &= T - P\Sigma ,\\ T_x^2 + T_z^2 + L_x^2 + L_z^2 &= 1 + \Sigma^2 - P^2 - T^2 ,\\ T_x L_z - T_z L_x &= \Sigma - PT . \end{split}$$

•Frost uses long. and trans. polarized target with circular and linearly polarized photons to obtain 16 polarization observables.

•8 observables needed to determine 4 complex CGLN amplitudes.

•Overdetermined experiment allows for consistency checks.

Particle Identification

Protons, pions, and kaons are identified by beta and momentum cuts.

)

- Kaon region may overlap with misidentified protons and pions.
- Bad timing information may also give false kaon identification at low momentum.

Missing Mass Plots: Finding Λ

 Λ and Σ are identified by missing mass.

Background is reduced by subtracting data from the carbon target times a scaling factor.

Fitting with a double gaussian gives us a range (+/- 2σ) for accepted Λ events.

 $\mathsf{D}_{\mathsf{eff}}$ is the ratio of butanol events to carbon events times scaling factor in the region

Missing Mass Plots: Finding Λ (cont)

 Λ favored in backwards direction in CM frame

Polarization Observable E: Comparison to Model Predictions (full circ. pol. set)

$$E = \frac{D_{eff}}{P_{\lambda}P_{z}} \frac{N_{par} - N_{anti}}{N_{par} + N_{anti}}$$

•Doesn't appear to follow model predictions. However, the values at the end points are also far from the required value. Possibly steep decline at both ends like SAID PWA near π .

•Higher $\cos \theta$ bins are more suspect due to high background contamination.

•For full asymmetry, $P_{\lambda} \sim 0.8$, $P_{el} \sim 0.85$ are taken as averages.

Polarization Observable E: More Energy ranges

Polarization Observable L_z[,]: Comparison to Model Predictions (1.645 GeV Beam)

 $L_{z'} = \frac{D_{eff}}{P_{z}} \frac{N_{>} - N_{<}}{N_{>} + N_{<}}$

Lz' is found by comparing the angle of the decay proton with that of lambda.

 $N_{>}$ is the number of decay protons with greater θ than Λ in the CM frame for positive target polarization and the opposite for negative target polarization. Possible inversion of Mart-Bennhold and SAID structure.

Polarization Observable L_z: More Energy Ranges (1.645 GeV Beam)

Conclusions and Further Work

- Results are still preliminary, but first measurements of E suggest a departure from model predictions.
- Issues at extreme angles in the measurement of E need to be investigated. Available statistics may prove to be an obstacle.
- L_z shows some agreement with SAID PWA at 1.5 GeV, if opposite sign convention is being used.
- Measurements for the other polarization observables that can be obtained using circularly polarizes photons on longitudinally polarized target will be completed.