Polarization Observable E in the $\gamma(p,\pi^+)n$ Reaction

Steffen Strauch for the CLAS Collaboration
University of South Carolina

APS April Meeting, Washington DC, February 14, 2010
Studying the Excited States of the Nucleon

- The location and properties of excited states reflect the dynamics and relevant degrees-of-freedom within the nucleons.

Quark Models

- Symmetric Constituent Quark Models predict overabundance of excited states ("missing" resonance problem)
- Quark-Diquark Models predict fewer states
- Quark and Flux-Tube Models predict increased number of states

\[\gamma N \rightarrow N\pi, N\pi\pi, N\eta, YK, \ldots \]

Figure from: B. Krusche and S. Schadmand, Prog. Nucl. Phys. 51, 399 (2003)
Extraction of Resonance Parameters

- Measurements of eight observables needed to unambiguously determine the four amplitudes of single meson photoproduction:
 - differential cross section: $d\sigma/d\Omega$
 - single polarization observables: P, T, Σ
 - double polarization observables
- CLAS experiments with
 - polarized beam
 - polarized target (FROST, HD-Ice)
 - baryon recoil polarization (weak decay of hyperons)
The CEBAF Large Acceptance Spectrometer

- Large acceptance spectrometer
- Polarized tagged photon beam
- Polarized target (FROST, HD-Ice)

Pion Photoproduction: Observable E

- Circularly polarized beam / longitudinally polarized target

$$\left(\frac{d\sigma}{d\Omega} \right) = \left(\frac{d\sigma}{d\Omega} \right)_{\text{unpol}} \left(1 - P_Z P_{\odot} E \right)$$

- Estimator for E

$$E = -\frac{1}{hP_z P_{\odot}} \frac{N^+ - N^-}{N^+ + N^-}$$

- Bound-nucleon background is accounted for by the dilution factor h.

Polarized Beam and Target

- Circularly polarized photons
 - Tagged photon beam
 - $E_e = 1.65$ GeV, 2.48 GeV
 - Electron beam polarization: $P_e \approx 85\%$

- Longitudinally polarized target
 - Frozen Spin Butanol (C_4H_9OH) with polarized free protons
 - $P_Z \approx 80\%$
 - Carbon target to study bound nucleon background

\[
P_\gamma = P_e \frac{4x - x^2}{4 - 4x + 3x^2}
\]
\(\gamma(p, \pi^+)X \) - Missing-Mass Distribution

- \(\pi^+ \) production off free and bound nucleons; Identification of reaction channel: \(m_X \approx m_N \)
- Background from reactions off bound (unpolarized) nucleons

Dilution factor, \(h \):
- Quenching of the asymmetry signal
- For the butanol target \((C_4H_9OH)\) the simple estimate is \(h \approx 10/74 \approx 0.14 \)
- \(h \approx 0.5 \) after event selections
$\gamma(p,\pi^+)n$ - Selected Preliminary Results

Summary

- CLAS Frozen-Spin-Target (FROST) Program
- Preliminary results for double-polarization observable E in π^+ photoproduction
- About 600 data points covering a wide energy and angular range

 $-0.9 < \cos(\theta_{\pi,\text{cm}}) < +0.9$

 $1.24 \text{ GeV} < W < 2.30 \text{ GeV}$

 Average uncertainty for E: ± 0.07 (statistical) and < 10% (systematics)

- The data will greatly constrain partial-wave analyses and reduce model-dependent uncertainties in the extraction of nucleon resonance properties, providing a new benchmark for comparisons with QCD-inspired models.

\[\gamma p \rightarrow \pi^+ n \]