Λ*(1520) Photoproduction on Proton and Neutron from CLAS eg3 data set

Zhiwen Zhao

APS April 2010 2010/2/14

- Physics motivation
- Data analysis
- Preliminary results
- Summary and outlook
Physics Motivation

\(\Lambda(1520) \, D_{03} \quad I(J^P) = 0(3/2^-) \)

\[\text{Mass } m = 1519.5 \pm 1.0 \text{ MeV} \quad \text{Full width } \Gamma = 15.6 \pm 1.0 \text{ MeV} \]

- \(\Lambda^*(1520) \) production mechanism is still poorly understood due to the lack of experimental data.

 on the Proton

1. two photoproduction measurements

2. two electroproduction measurements

 on the Neutron,

 No published data

- Existing Data suggest dominance of t-channel processes and \(K^* \) or \(K \) exchange.

- Several model predictions for total and differential cross sections are available.

- Measurement of cross section and decay angular distribution can provide constraints on model prediction and insights into the production mechanism.

- Possible missing \(N^* \) resonances decaying through strange channels.
• Photoproduction measurements on the Proton were performed at SLAC and Daresbury

• Daresbury measured differential and total cross section as well as decay angular distribution in the energy range of 2.8-4.8 GeV
 – First look at the decay angular distribution showed dominance of \(m_z = \pm \frac{3}{2} \) spin projection
 – Limited statistics

• **No data on Neutron yet**
Theoretical Result

Proton
Comparing between data and theory

Electroproduction of Λ^* off Proton has been studied at DESY and CLAS

CLAS data (S. Barrow, e1c) showed:
- Dominance of t-channel process confirmed
- Decay angular distribution showed significant contribution from $m_z=\pm 1/2$ spin projection
CLAS Detector

Drift Chambers
35,000 wires
$\sigma_R = 350 \, \mu m$

Superconducting Toroidal Magnet
$\int Bdl = 1.7 \, T \cdot m$

Cerenkov Counters
216 channels
99.5% efficient
over 50 m2 area

electron beam direction

Time of Flight Counters
500+ channels, 145 ps resolution

Electromagnetic Shower Calorimeters
1700+ channels
$\sigma/E = 10\% / E^{0.5}$
Relevance Channels

deacon target

\[\gamma p(n) \rightarrow K^+ \Lambda^* (n) \quad \text{Proton} \]
\[\gamma n(p) \rightarrow K^0 \Lambda^* (p) \quad \text{Neutron} \]
\[(\Lambda^* \rightarrow p K^-, K^0 \rightarrow K^s \rightarrow \pi^+ \pi^-) \]

eg3 run

- Photon beam: electron beam 5.77 GeV, photon energy Tagger 1.15 < E < 5.5 GeV, 30 nA
- Target: 40 cm upstream, LD2
- Trigger: Tagger 4.5 < E < 5.5 GeV, STxTOF (3 sectors and prescaled 2 sectors), ST
- Torus field: optimized to -1980 A, negative outbending
- Run period: 12/06/2004 – 01/31/2005, 29 days of production on LD2 target
- Data: 4.2 billion physics events, 32 TB raw data, average 2.7 tracks/event
Event Selection

Particle timing after photon selected

Cut Missidentified Pions

Before misid $\pi^+ \pi^- \text{ cut}$

After misid $\pi^+ \pi^- \text{ cut}$
Event Selection

Positive

Negative

Particle timing after photon selected

InvM of K^0

Before K^0 cut

After K^0 cut

Before K^0 cut

After K^0 cut

MM($\rho\pi^+\pi^-\pi^-$) (GeV)

MM($\rho\pi^+\pi^-K^-$) (GeV)
InvM of $p\ K^-$

Proton

Neutron
Proton Kinematic Distribution

$1.5 < E_\gamma < 5.5$ GeV
16 bins, bin width = 250 MeV

$0.25 < t' < 3$ GeV²
6 bins, bin width varies
Kinematic Distribution

1.75 < E_γ < 5.5 GeV
6 bins, bin width varies

0. < t' < 3 GeV2
6 bins, bin width varies

Data

Simulation

$t' = -(t - t_0)$ (GeV)2

E_γ (GeV)

$t' = -(t - t_0)$ (GeV)2

E_γ (GeV)
Yield Extraction (data)

1.5 < \(E_{\gamma} \) < 5.5 GeV
16 bins, bin width=250 MeV

0.25 < \(t' \) < 3 GeV^2
6 bins, bin width varies

\(M(pK^-) \) GeV
Yield Extraction (data)

0. < t' < 3 GeV²
6 bins, bin width varies

1.75 < E_γ < 5.5 GeV
6 bins, bin width varies
Yield and Acceptance

Yield

Data

Simulation

N of generated

Acceptance

Proton

\[\text{Yield} = \frac{dN}{dE} \]

\[\text{Acceptance} = \frac{dN}{dE} \]

\[t' \text{ bin} \]

\[E'_Y \text{ bin} \]

\[t' \text{ bin} \]

\[E'_Y, t' \text{ bin} \]
Proton

Differential Cross Section

\[\frac{d\sigma}{dt} (\mu b) \]

1. 1.5 < E_γ < 5.5 GeV
 16 bins, bin width=250 MeV

2. Extrapolating to low \(t' \) with an exponential function

3. Integrating over \(t' \) to get total cross section.

Preliminary, stat error only
Differential Cross Section

- $1.75 < E_\gamma < 5.5$ GeV
- 6 bins, bin width varies

- Extrapolating to low t' with an exponential function

- Integrating over t' to get total cross section.

Preliminary, stat error only
Total Cross Section

\(\Lambda^*(1520) \) total cross section

\[\sigma_{\text{Tot}} (\mu b) \]

Preliminary, stat error only
t-slope

Preliminary, stat error only
Summary

• The $\Lambda^*(1520)$ differential and total cross sections up to 5.5 GeV on the *Proton* are extracted. The total cross section is in good agreement with the the CLAS g11 run and Daresbury results.

• The $\Lambda^*(1520)$ differential and total cross sections on the *Neutron* are obtained for the first time. The total cross section is much larger than what the theory expected.

Outlook

• Decay angle study

• systematics

• Look for possible missing N* resonances.
Back up
Phi and Lambda_{1520} interference
Decay angle