

M.Battaglieri Istituto Nazionale di Fisica Nucleare Genova - Italy

Search for EXOTICA at CLAS12

The tool: electromagnetic interaction

- weaker than strong interactions
- therefore calculable perturbatively
- based on the well-known QED

The scattering is normally analyzed in term of the <u>One-Photon-Exchange</u> approximation (OPE)

- Direct γ_v qqq system coupling
- Establish the excitation spectrum
- Access to strong interaction dynamics (Q² evolution of resonance form factors)

JLab today!

- $q\bar{q}$ system \rightarrow easier to study
- Indirect coupling to initial particle
- Access to gluonic degrees of freedom

JLab tomorrow!

QCHS IX

Search for EXOTICA at CLAS12

Jefferson Lab (now)

E _{max}	~ 6 GeV
l _{max}	~ 200 μ Α
Duty Factor	~ 100%
σ _ε /Ε	~ 2.5 10 ⁻⁵
Beam P	~ 80%
Ε _γ	~ 0.8-5.7 GeV

Meson spectroscopy with photons at JLab Why photoproduction?

* Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

★ Production rate for exotics is expected comparable as for regular mesons

Few data (so far) but expected similar production rate as regular mesons

Partial Wave Analysis

QCHS IX

Partial Wave Analysis with CLAS Moments + Dispersion relations

 $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^{+} \pi^{-}$

M($\pi^+\pi^-$) spectrum below 1.5 GeV:

P-wave: ρ meson D-wave: $f_2(1270)$ S-wave: σ, $f_0(980)$ and $f_0(1320)$

M_{ππ} (GeV)

-t (GeV²)

QCHS IX

Coherent meson production on nuclei

* Eliminate s-channel resonance background

* Simplify PWA: S=I=0 target acts as spin and parity filter for final state mesons

★ Production cross section expected ~ $e^{-bt} |A F_A(t)|^2 \rightarrow low -t kinematic$

Detection of recoiling nucleus:

- low -t (p~0.2-0.5 GeV)
- thin (gas) target (~10⁻³ g/cm²)

Photon beam: - small size - high flux

quasi-real photoproduction Hall-B

- Radial TPC with 7atm. He4 Target
- Solenoid for forward -focusing of Moeller electrons and bending of recoil nucleus in the TPC
- PbWO4 calorimeter for improved photon acceptance at forward angles

EG6: Meson spectroscopy in coherent ⁴He photoproduction

The detector: CLAS12

- Determination of J^{PC} of meson states requires Partial Wave Analysis
- Decay and Production of exclusive reactions
- Good acceptance, energy resolution, particle Id

Hermetic charged/neutral particles detector

Forward Detector

★ TORUS Magnet
 ★ Forward SVT tracker
 ★ HT Cerenkov Counter
 ★ LT Cerenkov Counter
 ★ Forward TOF System
 ★ Preshower calorimeter
 ★ E.M. Calorimeter

Central Detector

★ SOLENOID magnet
 ★ Barrel silicon tracker
 ★ Central TOF

Proposed updates

- Micromegas (CD)
 Neutron detector (CD)
- * Forward Tagger

Meson spectroscopy with photons at JLab-12GeV

***** The photon beam requirements

- High luminosity
- Tagger (initial photon energy) is required to add 'production' information to decay

 Linear polarization is useful to simplify the PWA and essential to isolate the nature of the t-channel exchange

 \star Essential to isolate production mechanisms (M)

* Polarization acts as a J^{PC} filter if M is known

 \bigstar Linear polarization separates natural and unnatural parity exchange

- With a 12 GeV electron beam only few choices:
 - 1) Bremsstrahlung
 - 2) Quasi-real electro-production

Hall-D and Hall-B will host real photon beams!

Photoproduction in CLAS12

Quasi-real electroproduction at Low Q²

★ Electron scattering at "0" degrees (2° - 5°) low Q2 virtual photon ⇔ real photon

★ Photon tagged by detecting the scattered electron at low angles High energy photons 7 < E_{γ} < 10.5 GeV

Quasi-real photons are linearly polarized Polarization ~ 65% - 20% (individual)

★ High Luminosity (unique opportunity to run thin gas target!) Equivalent photon flux N_y ~ 5 10⁷ on 40cm H_y (L=10³⁵ cm⁻²s⁻¹)

Complementary to Hall-D (GLUEX) Exploits the unique PID&resolution of CLAS12

Photoproduction in CLAS12

High Luminosity

Photon beam requirement

Tagger (initial photon energy) is required to add 'production' information to decay
Linear polarization simplifies the PWA

Quasi-real electroproduction at Low Q²

Forward Tagger

Calorimeter + tracking device + veto

Electron energy/momentum

Photon energy (v=E-E') Polarization $\varepsilon^{-1} \sim 1 + v^2/2EE'$

Electron angles

 $Q^2 = 4 E E' \sin^2 \vartheta/2$ φ polarization plane

Veto for photons

Rates in the forward tagger $L_e^{-10^{35}}$ cm⁻² s⁻¹ (N_y~ 0.5 10⁸ y/s)

Search for EXOTICA at CLAS12

The Forward Tagger in CLAS12

Calorimeter options

★ Radiation hardness
 ★ light yield (cooling?)
 ★ timing

* temperature dependence

- Magnetic field effect
- light read-out (APD/SiPM)

* Homogeneous (crystals)

EM shower: ionization energy of charged particles (electrons)

Longitudinal size:

Radiation lenght X_0 (e loses 1-1/e E)

~ 180 A/Z² (gr/cm²)

Transverse size:

Moliere Radius R_M (90% of shower)

~ 7 A/Z (gr/cm²)

ጵ PbWO

Fast, rad hard, few light, well known

LSO/LYSO

Quite fast (8x), more light (100x) poorly known

\star LaBr

Fast, a lot of light (600x), expensive

PbWO4			
τ Decav	~ 6.5 n	IS	
R _M	~ 2.1 c	m	
ρ	~ 8.3 g	g/cm³	
X	~ 0.9 c	cm	
light yi	eld 0.39	% (LY Nal(TI))	
🜟 CMS(L	HC)	ECAL	
🛧 ALICE	(LHC)	PHOS	
🜟 CLAS (JLab)	IC	
🔶 🛧 PANDA	(GSI)	EMC	

- ★ 16k PbWO-II crystals
- \star Size = 2 x 2 x 20 cm3 (23 X₀)
- **★ LY = 20 phe/MeV**
 - (80 phe/MeV @ -25°C)
- * APD readout
- ***** Resolution $(2/\sqrt{E} \oplus 1)\%$

0.03409 + 0.004 0.02129 ± 0.007 0.01876 + 0.00*

E (GeV)

1.938/1 $.1703 \pm 0.00397$ 0.01+0.00229

 χ^2 / ndf

Physics channels simulation

Partial Wave Analysis

Partial Wave Analysis

* The development of robust PWA techniques is a crucial step for the succesful completion of any meson spectroscopy program

* Advancements in detectors, beam and experimental techniques are leading to a high precision and high statistics data sets

Are the prently available PWA tools adequate for the new data that are and will be produced?

Workshop on Hadron Spectroscopy

INT - Seattle, November 9-13 2009

Organizers: M. Battaglieri, C. Munoz Camacho, RDV, J. Miller, A.P. Szczepaniak

- ~ 40 participants from the theoretical and experimental community
- address open issues in experimental techniques, pwa, and theoretical interpretation
- Interest from the theory community to work with experimentalists to develop more sophisticated analysis approaches, going beyond the isobar model
- white paper being written

Next meeting:

Workshop on Amplitude Analysis in Hadron Spectroscopy ECT* - Trento, January 24-28 2011

Organizers: C. Hanhart, M. Pennington, E. Santopinto, A.P. Szczepaniak (coordinator), U. Wiedner

Conclusions

Search for exotica in photoproduction experiments at CLAS12

- * Jefferson Lab is providing new, precise and abundant data on hadron spectroscopy
- * CLAS runs (up to 6 GeV) show real photon beams can be effectivly used to search for exotic particles
- ***** PWA has been succesfully applied to meson photoproduction in CLAS
- ***** We are proposing an extention of this program to CLAS12
- * Low Q2 electroproduction is a complementary technique to the Hall-D coherent Bremsstrahlung
- * Dedicated detectors and high intensity photon beams at JLab-12 are under construction, ready to run in a near future!