Recent Studies of the Leptonic Decays of Photoproduced Vector and Pseudoscalar Mesons off of ¹H at Jefferson Lab

> Michael Paolone¹, Michael Kunkel², Chaden Djalali¹, and Dennis Weygand³.

> > For the CLAS Collaboration

¹University of South Carolina ²Old Dominion University ³Thomas Jefferson National Accelerator Facility

LASNPA IX, Quito Ecuador 2011

Photoproduction of light neutral mesons

- $\gamma p \rightarrow e^+ e^- (p)$ Vector Mesons
 - No Final State Interactions (FSI) in medium modification studies
 - Interference between the ρ and the ω

- $\gamma p \rightarrow p e^+e^-\gamma$ Pseudoscalar Mesons $\mathcal{V}_{\mathcal{A}}$
 - Access to transition charge form factors
 - Limited world statistics on Dalitz decays of photoproduced η and upper limits to the η' cross section.

70. 195 26

Jefferson Lab Experiment g12

- Jefferson Lab is a 6 GeV continuous electron beam accelerator, capable of delivering beam to 3 independent experimental halls.
- Hall-B houses the CLAS detector, ideal for photoproduction and lepton identification.
- g12 in CLAS
 - Up to a 5.5 GeV photon beam incident on a LH₂ target
 - Raw sensitivity of ~ 68 pb⁻¹
 - 26.2 x10⁹ production triggers
 (3 x 10⁶ di-lepton triggers)

• EC and CC combine to provide an e/π rejection factor of 10^{-6} for di-lepton pairs.

Selecting VM or PSM

20. 15 26

- By knowing:
 - Tagged photon energy.
 - Target mass
 - Scattered proton and dilepton four-vectors.
- Cuts can isolate VM from PSM:
 - Missing Energy
 - Dilepton Opening Angle

Selecting VM or PSM

- By knowing:
 - Tagged photon energy.
 - Target mass
 - Scattered proton and dilepton four-vectors.
- Cuts can isolate VM from PSM:
 - Missing energy greater than zero: 1000 additional particle:
 - ME > 0.0
 - Small dilepton opening angle: virtual photon → dilepton

Selecting VM or PSM

- By knowing:
 - Tagged photon energy.
 - Target mass
 - Scattered proton and dilepton four-vectors.
- Cuts can isolate VM from PSM:
 - Missing energy equal to zero: no additional photon
 - ME = 0
 - Large dilepton opening angle:
 VM → dilepton

 $- \theta_{ee} > 0.5 rad$

Part I: Vector Mesons and ρ - ω Interference

- Understanding the interference with electromagnetic production and decay is useful in interpretation of recent Medium Modification studies (Chaden Djalali's earlier talk).
- Previous publications on the interference are from nuclear targets:

Target	K _{max} (GeV)	Range m _{e+e-} (MeV/c ²⁾	Phase φ (in deg)	Reference
Be	7.0, 5.1	700-870	41 ± 20	PRL25 (1970) 1373 NPB25 (1971) 333
С	4.1	675-850	100 ⁺³⁸ -30	PRL24 (1970) 1197
С	4.1	590-830	118 ⁺¹³ -22	PRL27 (1971) 1157

• Theoretical predictions from Lutz and Soyeur (NPA750 2005) predict significant constructive interference on the proton, destructive on the neutron.

Signal and Background

- Looking for $\rho \to e^+ \, e^{\scriptscriptstyle -}$ and $\omega \to e^+ \, e^{\scriptscriptstyle -}$
- Known Backgrounds:
 - $\omega \rightarrow e^+ e^- \pi^0$: Background reduced with tight missing mass cut on the proton.
 - Due to an upstream ¹H target, the Bethe-Heitler is significant and must be accounted for.
 - Uncorrelated lepton pairs are also eliminated by tight missing mass cuts on the proton.

VMD and t-channel VM production

- The Vector Meson Dominance (VMD) model assumes the photon interacts with hadrons as a virtual vector meson.
- Photoproduction of the ρ and ω off of a proton, leaving a proton in the final state can be described an exchange between scalar / pseudoscalar mesons. Vector mesons are prohibited by charge conjugation invariance. The Feynman diagrams can be drawn:

ρ-production:

VMD and t-channel VM production

- The Vector Meson Dominance (VMD) model assumes the photon interacts with hadrons as a virtual vector meson.
- Photoproduction of the ρ and ω off of a proton, leaving a proton in the final state can be described an exchange between scalar / pseudoscalar mesons. Vector mesons are prohibited by charge conjugation invariance. The Feynman diagrams can be drawn:

 ω -production:

Selecting an Outgoing Proton

 Initial cuts must be made on the missing mass to isolate a proton in the final state and reduce background contamination.

Selecting the Delta

- If a secondary cut is made on a (n π⁺) mass to be (1232 +/- 100 MeV), the Δ⁺ baryon resonance can be selected.
- This channel prefers ω production:

75. 75. 25

Selecting the Delta

Interference Formalism

• The ρ - ω interference can be described by constructing a complex and symmetric mass matrix:

$$M = \begin{bmatrix} M_{\rho} & -\delta \\ -\delta & M_{\omega} \end{bmatrix} \qquad \qquad M_a = (m^2 - m_a^2 + im\Gamma_a)/m\Gamma_a$$

• The propagator can then be constructed as:

$$P = |M|^{-1} = \frac{1}{M_{\rho}M_{\omega} - \delta^2} \begin{bmatrix} M_{\omega} + \delta \\ +\delta & M_{\rho} \end{bmatrix} \approx \begin{bmatrix} 1/M_{\rho} & \delta/M_{\rho}M_{\omega} \\ \delta/M_{\rho}M_{\omega} & 1/M_{\omega} \end{bmatrix}$$

• And the amplitude then takes the form:

$$F(e^+e^-) = [T(\rho \to e^+e^-) \quad T(\omega \to e^+e^-)]P \begin{bmatrix} A(\gamma p \to \rho) \\ A(\gamma p \to \omega) \end{bmatrix}$$

Combining to make:

$$F(e^+e^-) = \frac{T_{\rho}A_{\rho}}{M_{\rho}} + \frac{T_{\omega}A_{\omega}}{M_{\omega}} + \frac{\delta(T_{\rho}A_{\omega} + T_{\omega}A_{\rho})}{M_{\omega}M_{\rho}}$$

Interference Formalism

• The a phase is then introduced, accounting for the cross amplitudes and mass term:

$$1 - ie^{i\phi_{\rho}} = -\frac{\delta}{M_{\rho}} \left(\frac{T_{\rho}A_{\omega} + T_{\omega}A_{\rho}}{T_{\omega}A_{\omega}} \right)$$

• The amplitude is then rewritten as a combination of the meson amplitudes with a complex phase term:

$$F = f_{\rho} + i e^{i\phi_{\rho}} f_{\omega}$$

• When squared, the amplitude takes the form:

$$F^{2} = f_{\rho}^{2} + f_{\omega}^{2} - \frac{2a}{b^{2} + c^{2}} (b\sin\phi_{\rho} + c\cos\phi_{\rho})$$

Fitting Procedure

- The $e^+ e^-$ invariant mass spectrum is fit with:
 - Two Breit-Wigner functions
 - Relativistic
 - Mass dependent widths
 - Interference term
 - Gaussian convolution
 - Background function for Bethe-Heitler:
 - 1: Monte Carlo GiBUU form
 - 2: Third-order Polynomial

Fits with a Selected Proton

30. 755 26

Fit / non-interfering / MC background

- Proton MM cut.
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

Bethe-Heitler

Total

ω

Fit / interfering / MC background

- Proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

Fit / non-interfering / polynomial background

- Proton MM cut
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is a 3rd order polynomial, all parameters allowed to float.

Bethe-Heitler

Total

ω

Fit / interfering / polynomial background

- Proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler is a 3rd order polynomial, all parameters allowed to float.

Fits Without Proton Selection

• Must subtract "uncorrelated" lepton pairs by looking at likecharge mass spectra: $N_{+-} = 2\sqrt{N_{++} + N_{--}}$

Fit / non-interfering / MC background

- No proton MM cut.
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

Bethe-Heitler

Total

ω

Fit / interfering / MC background

- No proton MM cut •
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler form is • taken from Monte Carlo and allowed to scale.

Bethe-Heitler

Interference Term

Total

ω

 χ^2 / ndf

Prob

111.4 / 54

7.118e-06

Fit / non-interfering / polynomial background

- No proton MM cut
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is a 3rd order polynomial, all parameters allowed to float.

Bethe-Heitler

Total

ω

Fit / interfering / polynomial background

- No proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler is a 3rd order polynomial, all parameters allowed to float.

Bethe-Heitler

Interference Term

Total

ω

Interference Phase Preliminary Results

Fit Type	Interference Phase	X ² /ndf
MM cut / MC background	Not fit	1.784
MM cut / MC background	5.308 +/- 0.105	1.270
MM cut / 3 rd order pol.	Not fit	1.187
MM cut / 3 rd order pol.	5.203 +/- 0.164	1.056
No MM cut / MC background	Not fit	5.891
No MM cut / MC background	5.830 +/- 0.080	2.063
No MM cut / 3 rd order pol.	Not fit	1.748
No MM cut / 3 rd order pol.	5.541 +/- 0.128	1.263

36. 75 6

Part II: Pseudoscalar Mesons η and η' Dissertation work from <u>Michael C. Kunkel</u>

η Statistics from g12

 $\eta \rightarrow e^+ e^- \gamma$ 3,440 events

- g12 experiment has largest world statistics for η reconstructed from Dalitz decays
- Data has not yet been corrected for η → γγ, where one of the photons pair creates in the target medium.

Selecting Dalitz Decays 60

- Beyond Exclusivity Cuts:
 - Correcting for the detected photon momentum significantly increases statistics within exclusivity cuts.

The Charge Form Factor of η

• For $\eta \rightarrow e^+ e^- \gamma$:

20. 15: 26

$$F(q^2) = \frac{1}{1 - \frac{q^2}{\Lambda^2}}$$

m is the dilepton mass m_e is the electron mass m_p is the parent meson mass Λ is the monopole FF parameter

The η dilepton mass spectrum

- The lowest mass bin has more events than are expected. This is likely from two sources:
 - Acceptance in the low mass region drops significantly.
 - The decay η → γγ, where one of the photons pair produce in the target or target walls. Currently, simulation is being run on this process.

η' Dalitz

213 events

• G12 data shows a clear enhancement at the η' mass (958 MeV): $\eta' \rightarrow e^+e^-\gamma$

Conclusion

- Understanding the ρ - ω interference in the elementary process will help with the of interpretation of in-medium studies.
- The interference phase itself from fits with different background shapes all agree within statistical error: preliminary phase: $\varphi = 5.25 + 0.20$.
- The transition charge FF for the η (and π^0) are being studied
- The first ever η' dalitz decay is being measured in experiment g12, with cross sections and branching ratios upcoming.

Extra Slides:

Bethe-Heitler

- Problems:
 - Bethe-Heitler MC and data do not agree well.
 - Possible Bethe-Heitler / VM interference.
 - Shows up in detected asymmetries. CLAS is asymmetric in electron / positron acceptance.

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.

CLAS Positron / Electron Acceptance

35

Fit Results (Non-Interfering)

- Assuming two separate non-interfering Breit-Wigner forms, the fit does not describe the data very well:
 - χ^2 /ndf ~ 2.8
 - ρ mass is 35 MeV low

Fit Results (Interfering)

- Fit results much better with an interfering Breit-Wigner.
 - χ^2 /ndf ~ 0.8
 - ρ mass and width consistent with pdg values.
- Interference phase of

5.772 +/- 0.076 1.837π +/- 0.002π

Alternate Subtraction / Fit (non-interfering)

- Subtraction of uncorrelated₄₀₀ lepton pairs and MC background.
- Tighter fit range to exclude low mass backgrounds.
 - χ^2 /ndf ~ 2.8
 - ρ mass is 50 MeV low
 - ρ width is 30 MeV too small

Alternate Subtraction / Fit (Interfering)

- Subtraction of uncorrelated lepton pairs and MC background.
- Tighter fit range to exclude low mass backgrounds.
- Fit is better / reasonable
 - χ^2 /ndf ~ 1.5
 - ρ mass is low, width is within errors.
 - Interference phase consistent with alternate method of background subtraction.

Conclusion

- ρ and ω in-medium publications have produced conflicting results.
- The ρ and ω have been studied in experiment g12 at JLab; photoproduced off of Hydrogen and reconstructed via the dileptonic decay channel to eliminate FSIs.
- When allowed to interfere, a good fit is obtained to the ρ-ω mass spectrum, giving a preliminary interference phase (Φ) of 5.772 +/- 0.076 (stat) radians.

- A number of studies have looked for medium modification effects in the ρ and ω, with somewhat conflicting results:
- ρ studies:
 - NA45 / CERES-CERN -- Width broadening
 - NA60 / CERN-SPS -- Width broadening
 - KEK-PS Mass shift
 - JLAB / g7a No change to mass or width
- ω studies:
 - KEK-PS -- Mass Shift
 - CBELSA / TAPS Inconclusive.

Nasseripour et al, Phys. Rev. Lett. 99 2007

 JLAB / g7a – Large width broadening through absorption

ω Absorption at Jefferson Lab (Experiment g7a) $γA → e^+e^-(X)$

Title:CompGlauber_12_5_prl.eps: PRL Ca Creator:ROOT Version 5.20/00 CreationDate:Thu May 20 13:59:32 2010

 $\omega \rightarrow e^+ e^-$

 $\Phi \rightarrow e^+ e^-$

- Mass "dip" after ω-peak and calculated transparency significantly less than predicted or previously measured.
 - Can ρ-ω interference account for this?
 - High statistics analysis needed on the elementary production channel.

2nd Order Born Corrections

- In leptonic pair photoproduction, the 2nd order Born contributions can be accessed through asymmetric detector acceptance between electrons and positrons.
- N₁(δ) {or N₁(δ) } is the rate of positrons {or electrons} with identical and opposite angle of the electron pair, but have an excess momentum of δ.

$$\epsilon(\delta) = \frac{N_+(\delta) - N_-(\delta)}{N_+(\delta) + N_-(\delta)}$$

Title

762 753. 75

• text