Recent Studies of the Leptonic Decays of Photoproduced Vector and Pseudoscalar Mesons off of 1H at Jefferson Lab

Michael Paolone1, Michael Kunkel2, Chaden Djalali1, and Dennis Weygand3.

For the CLAS Collaboration

1University of South Carolina
2Old Dominion University
3Thomas Jefferson National Accelerator Facility

LASNPA IX, Quito Ecuador 2011
Photoproduction of light neutral mesons

$\gamma p \rightarrow e^+ e^- (p)$ Vector Mesons
- No Final State Interactions (FSI) in medium modification studies
- Interference between the ρ and the ω

$\gamma p \rightarrow p e^+ e^- \gamma$ Pseudoscalar Mesons
- Access to transition charge form factors
- Limited world statistics on Dalitz decays of photoproduced η and upper limits to the η' cross section.
Jefferson Lab Experiment g12

- Jefferson Lab is a 6 GeV continuous electron beam accelerator, capable of delivering beam to 3 independent experimental halls.

- Hall-B houses the CLAS detector, ideal for photoproduction and lepton identification.

- g12 in CLAS
 - Up to a 5.5 GeV photon beam incident on a LH$_2$ target
 - Raw sensitivity of ~ 68 pb$^{-1}$
 - 26.2×10^9 production triggers (3 x 10^6 di-lepton triggers)

- **EC** and **CC** combine to provide an e/π rejection factor of 10^{-6} for di-lepton pairs.
Selecting VM or PSM

- By knowing:
 - Tagged photon energy.
 - Target mass
 - Scattered proton and dilepton four-vectors.
- Cuts can isolate VM from PSM:
 - Missing Energy
 - Dilepton Opening Angle
Selecting VM or PSM

- By knowing:
 - Tagged photon energy.
 - Target mass
 - Scattered proton and dilepton four-vectors.
- Cuts can isolate VM from PSM:
 - Missing energy greater than zero: additional particle:
 - $ME > 0.0$
 - Small dilepton opening angle: virtual photon \rightarrow dilepton
 - $\theta_{ee} < 0.5$ rad

\[\gamma p \rightarrow e^+ e^- p(X) \]
Selecting VM or PSM

- By knowing:
 - Tagged photon energy.
 - Target mass.
 - Scattered proton and dilepton four-vectors.

- Cuts can isolate VM from PSM:
 - Missing energy equal to zero: no additional photon
 - $\text{ME} = 0$
 - Large dilepton opening angle: VM \rightarrow dilepton
 - $\theta_{ee} > 0.5 \text{ rad}$
Part I: Vector Mesons and ρ-ω Interference

- Understanding the interference with electromagnetic production and decay is useful in interpretation of recent Medium Modification studies (Chaden Djalali's earlier talk).

- Previous publications on the interference are from nuclear targets:

<table>
<thead>
<tr>
<th>Target</th>
<th>K_{max} (GeV)</th>
<th>Range $m_{e^+e^-}$ (MeV/c2)</th>
<th>Phase ϕ (in deg)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>7.0, 5.1</td>
<td>700-870</td>
<td>41 \pm 20</td>
<td>PRL25 (1970) 1373</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NPB25 (1971) 333</td>
</tr>
<tr>
<td>C</td>
<td>4.1</td>
<td>675-850</td>
<td>100$^{+38}_{-30}$</td>
<td>PRL24 (1970) 1197</td>
</tr>
<tr>
<td>C</td>
<td>4.1</td>
<td>590-830</td>
<td>118$^{+13}_{-22}$</td>
<td>PRL27 (1971) 1157</td>
</tr>
</tbody>
</table>

- Theoretical predictions from Lutz and Soyeur (NPA750 2005) predict significant constructive interference on the proton, destructive on the neutron.
Signal and Background

- Looking for $\rho \rightarrow e^+ e^-$ and $\omega \rightarrow e^+ e^-$
- Known Backgrounds:
 - $\omega \rightarrow e^+ e^- \pi^0$: Background reduced with tight missing mass cut on the proton.
 - Due to an upstream 1H target, the Bethe-Heitler is significant and must be accounted for.
 - Uncorrelated lepton pairs are also eliminated by tight missing mass cuts on the proton.
The Vector Meson Dominance (VMD) model assumes the photon interacts with hadrons as a virtual vector meson.

Photoproduction of the ρ and ω off of a proton, leaving a proton in the final state can be described an exchange between scalar / pseudoscalar mesons. Vector mesons are prohibited by charge conjugation invariance. The Feynman diagrams can be drawn:

\begin{align*}
\frac{1}{g_\rho} & \rho (I = 0) + \frac{1}{g_\omega} \omega (I = 1) + \frac{1}{g_\rho} \eta (I = 0) \\
\Gamma_{\rho \rightarrow \pi\gamma} & \approx 2.0 \\
\frac{\Gamma_{\rho \rightarrow \pi\gamma}}{\Gamma_{\rho \rightarrow \pi\gamma}} & \approx 2.0 \\
(1/g_\rho)^2 & = 11.4(1/g_\omega)^2
\end{align*}
VMD and t-channel VM production

- The Vector Meson Dominance (VMD) model assumes the photon interacts with hadrons as a virtual vector meson.

- Photoproduction of the ρ and ω off of a proton, leaving a proton in the final state can be described an exchange between scalar / pseudoscalar mesons. Vector mesons are prohibited by charge conjugation invariance. The Feynman diagrams can be drawn:

\[\omega\text{-production:} \]

\[\frac{\Gamma_{\omega \rightarrow \pi \gamma}}{\Gamma_{\omega \rightarrow \eta \gamma}} \approx 100.0 \]

\[\left(\frac{1}{g_\rho}\right)^2 = 11.4\left(\frac{1}{g_\omega}\right)^2 \]
Selecting an Outgoing Proton

- Initial cuts must be made on the missing mass to isolate a proton in the final state and reduce background contamination.
Selecting the Delta

- If a secondary cut is made on a $(n \pi^+)$ mass to be $(1232 \pm 100 \text{ MeV})$, the Δ^+ baryon resonance can be selected.

- This channel prefers ω production:

 - For $I_C = 1$,
 - Allowed
 - π^0 $(I = 1)$
 - For $I_C = 0$,
 - Isospin Restricted
 - π^0 $(I = 1)$
Selecting the Delta

- If a secondary cut is made on a ($n\pi^+$) mass to be (1232 +/- 100 MeV), the Δ^+ baryon resonance can be selected.

- This channel prefers ω production:

\[
\begin{align*}
\text{Allowed} & \quad I_C = 1 \\
\text{Isospin Restricted} & \quad I_C = 1
\end{align*}
\]
Interference Formalism

- The ρ-ω interference can be described by constructing a complex and symmetric mass matrix:

$$M = \begin{bmatrix} M_\rho & -\delta \\ -\delta & M_\omega \end{bmatrix}$$

$$M_a = (m^2 - m_a^2 + im\Gamma_a)/m\Gamma_a$$

- The propagator can then be constructed as:

$$P = |M|^{-1} = \frac{1}{M_\rho M_\omega - \delta^2} \begin{bmatrix} M_\omega +\delta \\ +\delta & M_\rho \end{bmatrix} \cong \begin{bmatrix} 1/M_\rho & \delta/M_\rho M_\omega \\ \delta/M_\rho M_\omega & 1/M_\omega \end{bmatrix}$$

- And the amplitude then takes the form:

$$F(e^+e^-) = [T(\rho \rightarrow e^+e^-) \ T(\omega \rightarrow e^+e^-)]P \begin{bmatrix} A(\gamma p \rightarrow \rho) \\ A(\gamma p \rightarrow \omega) \end{bmatrix}$$

- Combining to make:

$$F(e^+e^-) = \frac{T_\rho A_\rho}{M_\rho} + \frac{T_\omega A_\omega}{M_\omega} + \frac{\delta(T_\rho A_\omega + T_\omega A_\rho)}{M_\omega M_\rho}$$
Interference Formalism

- The a phase is then introduced, accounting for the cross amplitudes and mass term:

$$1 - i e^{i \phi_{\rho}} = -\frac{\delta}{M_{\rho}} \left(\frac{T_{\rho} A_{\omega} + T_{\omega} A_{\rho}}{T_{\omega} A_{\omega}} \right)$$

- The amplitude is then rewritten as a combination of the meson amplitudes with a complex phase term:

$$F = f_{\rho} + i e^{i \phi_{\rho}} f_{\omega}$$

- When squared, the amplitude takes the form:

$$F^2 = f_{\rho}^2 + f_{\omega}^2 - \frac{2a}{b^2 + c^2} (b \sin \phi_{\rho} + c \cos \phi_{\rho})$$
Fitting Procedure

• The $e^+ e^-$ invariant mass spectrum is fit with:
 • Two Breit-Wigner functions
 – Relativistic
 – Mass dependent widths
 – Interference term
 – Gaussian convolution
 • Background function for Bethe-Heitler:
 1: Monte Carlo GiBUU form
 2: Third-order Polynomial
Fits with a Selected Proton
Fit / non-interfering / MC background

- Proton MM cut.
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

\[\chi^2 / \text{ndf} = 98.13 / 55 \]
\[\text{Prob} = 0.0003133 \]
\[\omega \text{ Mass} = 0.7795 \pm 0.0004 \]
\[A_{\omega} / A_{\rho} = 7.005 \pm 0.336 \]
\[\text{norm} = 0.02771 \pm 0.00121 \]
\[\text{MC Scale} = 3.739 \times 10^6 \pm 2.297 \times 10^5 \]
\[\text{res} = 0.007884 \pm 0.000586 \]
Fit / interfering / MC background

- Proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

```
Total
\omega
\rho
Bethe-Heitler
Interference Term
```

\[\chi^2 / \text{ndf} = 66.58 / 54 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\omega Mass</td>
<td>0.7823 ± 0.0007</td>
</tr>
<tr>
<td>A / A_\omega</td>
<td>8.413 ± 0.614</td>
</tr>
<tr>
<td>phase</td>
<td>5.308 ± 0.105</td>
</tr>
<tr>
<td>norm</td>
<td>0.01537 ± 0.00121</td>
</tr>
<tr>
<td>MC Scale</td>
<td>3.91e+06 ± 2.29e+05</td>
</tr>
<tr>
<td>res</td>
<td>0.008225 ± 0.000570</td>
</tr>
</tbody>
</table>
Fit / non-interfering / polynomial background

- Proton MM cut
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is a 3rd order polynomial, all parameters allowed to float.

\begin{align*}
\text{Total} & \quad \text{\omega} & \quad \text{\rho} \\
\text{Bethe-Heitler} & \quad & \quad
\end{align*}
Fit / interfering / polynomial background

- Proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler is a 3rd order polynomial, all parameters allowed to float.

Total

ω

ρ

Bethe-Heitler

Interference Term

\begin{verbatim}
\begin{tabular}{|l|c|}
\hline
χ^2 / ndf & 53.84 / 51 \\
Prob & 0.3661 \\
ω Mass & 0.7815 \pm 0.0008 \\
A_ω/A_ω & 6.75 \pm 0.82 \\
phase & 5.203 \pm 0.164 \\
norm & 0.01694 \pm 0.00164 \\
pol3-0 & -3921 \pm 78.8 \\
res & 0.008165 \pm 0.000586 \\
pol3-1 & 1.716e+04 \pm 1.118e+02 \\
pol3-2 & -2.331e+04 \pm 1.021e+02 \\
pol3-3 & 1.013e+04 \pm 1.436e+02 \\
\hline
\end{tabular}
\end{verbatim}
Fits Without Proton Selection

- Must subtract “uncorrelated” lepton pairs by looking at like-charge mass spectra:
 \[N_{+-} = 2\sqrt{N_{++} + N_{--}} \]
Fit / non-interfering / MC background

- No proton MM cut.
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

\[
\begin{align*}
\text{Total} & \quad \rho & \quad \omega & \quad \text{Bethe-Heitler} \\
\text{Counts} / 5.0 \text{ MeV} & \quad & & \\
\end{align*}
\]

\[
\begin{align*}
\chi^2 / \text{ndf} & = 324 / 55 \\
\text{Prob} & = 9.083 \times 10^{-40} \\
\omega \text{ Mass} & = 0.7782 \pm 0.0003 \\
A_\omega / A_\omega & = 6.198 \pm 0.250 \\
\text{norm} & = 0.07606 \pm 0.00221 \\
\text{MC Scale} & = 9.789 \times 10^6 \pm 4.701 \times 10^5 \\
\text{res} & = 0.008716 \pm 0.000395
\end{align*}
\]
Fit / interfering / MC background

- No proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler form is taken from Monte Carlo and allowed to scale.

\[
\chi^2 / \text{ndf} \quad 111.4 / 54 \\
\text{Prob} \quad 7.118 \times 10^{-6} \\
\omega \text{ Mass} \quad 0.7836 \pm 0.0005 \\
A_\omega / A_{1\omega} \quad 6.746 \pm 0.378 \\
\text{phase} \quad 5.83 \pm 0.08 \\
\text{norm} \quad 0.05324 \pm 0.00321 \\
\text{MC Scale} \quad 1.044 \times 10^7 \pm 4.618 \times 10^4 \\
\text{res} \quad 0.009025 \pm 0.000374
\]
Fit / non-interfering / polynomial background

- No proton MM cut
- No interference term
- The mass resolution is fitted
- Bethe-Heitler form is a 3\(^{rd}\) order polynomial, all parameters allowed to float.

\[
\begin{align*}
\chi^2 / \text{ndf} & \quad 90.88 / 52 \\
\text{Prob} & \quad 0.0006859 \\
\omega \text{ Mass} & \quad 0.7794 \pm 0.0003 \\
\lambda \text{ / } \lambda_{\text{max}} & \quad 8.876 \pm 0.490 \\
\text{norm} & \quad 0.07075 \pm 0.00219 \\
pol3-0 & \quad 3.021e+04 \pm 7.242e+03 \\
\text{res} & \quad 0.007848 \pm 0.000378 \\
pol3-1 & \quad -1.045e+05 \pm 2.707e+04 \\
pol3-2 & \quad 1.194e+05 \pm 3.321e+04 \\
pol3-3 & \quad -4.511e+04 \pm 1.341e+04
\end{align*}
\]

![Graph showing fit results with various lines representing different components and data points.]
Fit / interfering / polynomial background

- No proton MM cut
- Allowed to interfere
- The mass resolution is fitted
- Bethe-Heitler is a 3rd order polynomial, all parameters allowed to float.

```
\begin{align*}
\text{Total} & \quad \text{\textcolor{black}{--}} \\
\omega & \quad \text{\textcolor{blue}{--}} \\
\rho & \quad \text{\textcolor{red}{--}} \\
\text{Bethe-Heitler} & \quad \text{\textcolor{brown}{--}} \\
\text{Interference Term} & \quad \text{\textcolor{magenta}{--}} \\
\end{align*}
```

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{2} / \textit{ndf} & 65.4 / 51 \\
\hline
\textbf{Prob} & 0.08463 \\
\hline
\hline
\textbf{\textomega} Mass & 0.7821 \pm 0.0005 \\
\hline
\textbf{\textfrac{A_1}{A_0}} & 5.984 \pm 0.558 \\
\hline
\textbf{\textphase} & 5.541 \pm 0.128 \\
\hline
\textbf{\textnorm} & 0.05086 \pm 0.00384 \\
\hline
\textbf{\textpol}0 & -9357 \pm 154.0 \\
\hline
\textbf{\textres} & 0.008651 \pm 0.000373 \\
\hline
\textbf{\textpol}1 & 4.231e+04 \pm 2.136e+02 \\
\hline
\textbf{\textpol}2 & -5.884e+04 \pm 1.963e+02 \\
\hline
\textbf{\textpol}3 & 2.605e+04 \pm 2.716e+02 \\
\hline
\end{tabular}
\end{table}

\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{graph.png}
\end{center}
\end{figure}
Interference Phase Preliminary Results

<table>
<thead>
<tr>
<th>Fit Type</th>
<th>Interference Phase</th>
<th>X^2/ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM cut / MC background</td>
<td>Not fit</td>
<td>1.784</td>
</tr>
<tr>
<td>MM cut / MC background</td>
<td>5.308 +/- 0.105</td>
<td>1.270</td>
</tr>
<tr>
<td>MM cut / 3rd order pol.</td>
<td>Not fit</td>
<td>1.187</td>
</tr>
<tr>
<td>MM cut / 3rd order pol.</td>
<td>5.203 +/- 0.164</td>
<td>1.056</td>
</tr>
<tr>
<td>No MM cut / MC background</td>
<td>Not fit</td>
<td>5.891</td>
</tr>
<tr>
<td>No MM cut / MC background</td>
<td>5.830 +/- 0.080</td>
<td>2.063</td>
</tr>
<tr>
<td>No MM cut / 3rd order pol.</td>
<td>Not fit</td>
<td>1.748</td>
</tr>
<tr>
<td>No MM cut / 3rd order pol.</td>
<td>5.541 +/- 0.128</td>
<td>1.263</td>
</tr>
</tbody>
</table>
Part II: Pseudoscalar Mesons η and η'

Dissertation work from Michael C. Kunkel

- Limited statistics on η and η' Dalitz decay studies.
- Currently only an upper limit on η' Dalitz cross section.

- Soon to be published data from CB / TAPS@MAMI:

M. Berlowski, et. al., Phys. Rev. D77
WASA / CELCIUS, 2008

A. Lopez, et. al., Phys. Rev. Lett. 9
CLEO Collaboration, 2007

R. A. Briere, et. al., Phys. Rev. Lett. 84
CLEO Collaboration, 2000

η

$N_\eta = 729$

η'

$N_{\eta'}_{\text{tot}} < 300$

Counts: 1345 ± 59

$\sigma_\eta = (14.1 \pm 0.4) \text{ MeV}$
η Statistics from g12

η → e^+e^−γ 3,440 events

- g12 experiment has largest world statistics for η reconstructed from Dalitz decays
- Data has not yet been corrected for η → γγ, where one of the photons pair creates in the target medium.
Selecting Dalitz Decays

- Beyond Exclusivity Cuts:
 - Correcting for the detected photon momentum significantly increases statistics within exclusivity cuts.
The Charge Form Factor of η

- For $\eta \rightarrow e^+ e^- \gamma$:

$$\frac{d\Gamma}{dq^2} = \left(\frac{d\Gamma}{dq^2}\right)_{\text{point like}} \cdot |F(q^2)|^2$$

$$\frac{d\Gamma(P \rightarrow e^+ e^- \gamma)}{dm \Gamma(P \rightarrow \gamma \gamma)} = \frac{4\alpha}{3\pi m} \sqrt{1 - \frac{4m_e^2}{m^2}} \left(1 + \frac{2m_e^2}{m^2}\right) \left[1 - \frac{m^2}{m_P^2}\right]^3 |F(q^2)|^2$$

$$F(q^2) = \frac{1}{1 - \frac{q^2}{\Lambda^2}}$$

m is the dilepton mass
m_e is the electron mass
m_P is the parent meson mass
Λ is the monopole FF parameter
The η dilepton mass spectrum

- The lowest mass bin has more events than are expected. This is likely from two sources:
 - Acceptance in the low mass region drops significantly.
 - The decay $\eta \rightarrow \gamma\gamma$, where one of the photons pair produce in the target or target walls. Currently, simulation is being run on this process.
η' Dalitz

- G12 data shows a clear enhancement at the η' mass (958 MeV): $\eta' \rightarrow e^+e^-\gamma$

213 events

\[\text{PRELIMINARY} \]

Conclusion

- Understanding the ρ-ω interference in the elementary process will help with the interpretation of in-medium studies.

- The interference phase itself from fits with different background shapes all agree within statistical error: preliminary phase: $\varphi = 5.25 \pm 0.20$.

- The transition charge FF for the η (and π^0) are being studied.

- The first ever η' dalitz decay is being measured in experiment g12, with cross sections and branching ratios upcoming.
Extra Slides:
Bethe-Heitler

- Problems:
 - Bethe-Heitler MC and data do not agree well.
 - Possible Bethe-Heitler / VM interference.
 - Shows up in detected asymmetries. CLAS is asymmetric in electron / positron acceptance.
Background and Cuts

- **Cut 1**: Two leptons are skimmed from the total g12 data set.
- **Cut 2**: Both leptons must be in different sectors of CLAS.
- **Cut 3**: Vertex cut on event to be inside target walls.
- **Cut 4**: Coincidence timing cut between the leptons and the tagged photon.
- **Cut 5**: Additional EC cut to remove pions.
- **Cut 6**: Opening angle cut between leptons.
Background and Cuts

- **Cut 1:** Two leptons are skimmed from the total g12 data set.
- **Cut 2:** Both leptons must be in different sectors of CLAS.
- **Cut 3:** Vertex cut on event to be inside target walls.
- **Cut 4:** Coincidence timing cut between the leptons and the tagged photon.
- **Cut 5:** Additional EC cut to remove pions.
- **Cut 6:** Opening angle cut between leptons.
Background and Cuts

- **Cut 1:** Two leptons are skimmed from the total g12 data set.
- **Cut 2:** Both leptons must be in different sectors of CLAS.
- **Cut 3:** Vertex cut on event to be inside target walls.
- **Cut 4:** Coincidence timing cut between the leptons and the tagged photon.
- **Cut 5:** Additional EC cut to remove pions.
- **Cut 6:** Opening angle cut between leptons.
Background and Cuts

- **Cut 1:** Two leptons are skimmed from the total g12 data set.
- **Cut 2:** Both leptons must be in different sectors of CLAS.
- **Cut 3:** Vertex cut on event to be inside target walls.
- **Cut 4:** Coincidence timing cut between the leptons and the tagged photon.
- **Cut 5:** Additional EC cut to remove pions.
- **Cut 6:** Opening angle cut between leptons.

![Dilepton Invariant Mass (GeV/c²)](image)
Background and Cuts

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.
Background and Cuts

- Cut 1: Two leptons are skimmed from the total g12 data set.
- Cut 2: Both leptons must be in different sectors of CLAS.
- Cut 3: Vertex cut on event to be inside target walls.
- Cut 4: Coincidence timing cut between the leptons and the tagged photon.
- Cut 5: Additional EC cut to remove pions.
- Cut 6: Opening angle cut between leptons.
CLAS Positron / Electron Acceptance
Fit Results (Non-Interfering)

- Assuming two separate non-interfering Breit-Wigner forms, the fit does not describe the data very well:
 - $\chi^2/\text{ndf} \sim 2.8$
 - ρ mass is 35 MeV low
Fit Results (Interfering)

- Fit results much better with an interfering Breit-Wigner.
 - $\chi^2/\text{ndf} \sim 0.8$
 - ρ mass and width consistent with pdg values.
 - Interference phase of 5.772 ± 0.076
 $1.837\pi \pm 0.002\pi$
Alternate Subtraction / Fit (non-interfering)

- Subtraction of uncorrelated lepton pairs and MC background.
- Tighter fit range to exclude low mass backgrounds.
 - χ^2/ndf ~ 2.8
 - ρ mass is 50 MeV low
 - ρ width is 30 MeV too small

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/ndf</td>
<td>80.72 / 29</td>
</tr>
<tr>
<td>Prob</td>
<td>9.072e-07</td>
</tr>
<tr>
<td>M_rho</td>
<td>0.7142 ± 0.009671</td>
</tr>
<tr>
<td>M_omga</td>
<td>0.7784 ± 0.0004033</td>
</tr>
<tr>
<td>W_rho</td>
<td>0.12 ± 0.001622</td>
</tr>
<tr>
<td>W_omga</td>
<td>0.02173 ± 0.001134</td>
</tr>
<tr>
<td>A_rho</td>
<td>2.181 ± 0.08237</td>
</tr>
<tr>
<td>A_omga</td>
<td>4.318 ± 0.06207</td>
</tr>
<tr>
<td>phi</td>
<td>3.142 ± 3.822</td>
</tr>
<tr>
<td>norm</td>
<td>17.13 ± 0.2984</td>
</tr>
</tbody>
</table>
Alternate Subtraction / Fit (Interfering)

- Subtraction of uncorrelated lepton pairs and MC background.
- Tighter fit range to exclude low mass backgrounds.
- Fit is better / reasonable
 - χ^2/ndf \sim 1.5
 - ρ mass is low, width is within errors.
- Interference phase consistent with alternate method of background subtraction.
Conclusion

• ρ and ω in-medium publications have produced conflicting results.

• The ρ and ω have been studied in experiment g12 at JLab; photoproduced off of Hydrogen and reconstructed via the dileptonic decay channel to eliminate FSIs.

• When allowed to interfere, a good fit is obtained to the ρ-ω mass spectrum, giving a preliminary interference phase (Φ) of 5.772 ± 0.076 (stat) radians.
A number of studies have looked for medium modification effects in the ρ and ω, with somewhat conflicting results:

- **ρ studies:**
 - NA45 / CERES-CERN -- Width broadening
 - NA60 / CERN-SPS -- Width broadening
 - KEK-PS – Mass shift
 - JLAB / g7a – No change to mass or width

- **ω studies:**
 - KEK-PS -- Mass Shift
 - CBELSA / TAPS – Inconclusive.
 - JLAB / g7a – Large width broadening through absorption

ω Absorption at Jefferson Lab (Experiment g7a)

γ A \rightarrow e^+ e^- (X)

- Mass “dip” after ω-peak and calculated transparency significantly less than predicted or previously measured.
- Can ρ-ω interference account for this?
- High statistics analysis needed on the elementary production channel.

In leptonic pair photoproduction, the 2nd order Born contributions can be accessed through asymmetric detector acceptance between electrons and positrons.

\(N_+ (\delta) \) \{or \(N_- (\delta) \) \} is the rate of positrons \{or electrons\} with identical and opposite angle of the electron pair, but have an excess momentum of \(\delta \).

\[
\epsilon (\delta) = \frac{N_+ (\delta) - N_- (\delta)}{N_+ (\delta) + N_- (\delta)}
\]
Title

• text