Elastic Form Factors:

- Transverse current and charge density
- Quark longitudinal momentum and helicity distributions
- Correlated distributions in transverse space

DIS Parton Distribution Functions:

- \(H(x, \xi) \)
- \(E(x, \xi) \)
- \(F(x, \xi) \)

Elastic Form Factors:

- \(M(x, \xi) \)
- \(H(x, \xi) \)
- \(E(x, \xi) \)
- \(F(x, \xi) \)

Chiral even GPDs:

- \(c.m. \) and helicity distributions
- Functions:
 - \(V_1, V_2, V_3, V_4 \)
 - \(A_1, A_2, A_3, A_4 \)
 - \(F_1, F_2, F_3, F_4 \)

Accessing GPDs experimentally:

- Spin asymmetries \((x, \xi)\) HERMES, CLAS and Hall A (JLab)
- \(H(x, \xi) \), \(E(x, \xi) \), \(F(x, \xi) \)
- \(\xi \) and \(x \) are selected by reconstructing the final-state leptons and their missing four-momentum.

Selection of TCS-BH events:

- After kinematic selection of events, the invariant mass of the lepton pairs is constructed. The invariant mass is also a measure of the virtuality of the final-state photon, \(M_{\gamma^*} \), which provides the hard scale for the collinear process.

Experimental determination of \(R \):

\[
R = \frac{\sum \cos(\xi) \cdot Y_6}{\sum \sin(\xi) \cdot ReM^-}
\]

where \(Y_6 \) is defined as:

\[
Y_6 = \sum \frac{L(0)}{L(0)} \int \Phi(\theta) \cos(\phi) d\phi
\]

Events with \(0 < \theta < 3\pi/4 \) and \(\phi < \pi/4 \), of which the latter fall outside of the CLAS acceptance, are excluded from the calculation of \(R \) due to an unfavorable TCS/BH ratio.

Observables in TCS:

- \(\bar{R}(x, \xi, \eta) \)
- \(\frac{d^2s}{d\eta d\xi} \cos(\xi) \int \frac{d\Phi}{2\pi} \Phi(\theta) \int \sin^2(\xi) d\xi \)
- \(\frac{d^2s}{d\eta d\xi} \int \frac{d\Phi}{2\pi} \Phi(\theta) \int \cos^2(\xi) d\xi \)

Comparison with theory:

- Preliminary
- D
- NOD
- Dual
- Data

Summary:

- Photoproduction of \(e^+e^- \) has been studied using CLAS 6 GeV data with both tagged and untagged photon beams. This analysis used the latter approach, selecting quasi-real photoproduction events from electroproduction data. The success of this method, essential for 12 GeV CLAS experiments, is shown by the analysis of the missing four-momentum distribution and the invariant-mass distribution of the final-state lepton pairs in the reaction \(ep \rightarrow e^+e^-\pi^0 \).
- The data was measured over a range in the c.m. energy \(Q^2 \) and in the outgoing photon virtuality \(Q^2 \). The average values were \(s < 7 \times 10^4 \) GeV\(^2\) and \(Q^2 > 1.34 \times 10^4 \) GeV\(^2\), with \(x < 0.2 \) and \(M_\pi \), where \(M_\pi \) is the proton mass. These are the first experimental results on TCS angular asymmetries and the first comparison of the data with GPD-based models.
- The 12 GeV upgrade at Jefferson Lab will give access to higher virtualities of the outgoing timelike photon, placing it in a resonance-free region, and a larger range in \(x \), extending the coverage to lower values of \(x \).