SHORT DISTANCE STRUCTURE OF NUCLEI - MINING THE WEALTH OF EXISTING JLAB DATA

Larry Weinstein
Old Dominion University, Norfolk, VA
And a cast of thousands
Collaboration:

Spokespeople:
L.B. Weinstein, S.E. Kuhn, M. Strikman, M. Sargsian

Data Mining Scientist: G. Gavalian

Institutions:
ODU, Penn State, Florida International, Tel Aviv, Glasgow, William and Mary, Edinburgh, Ohio State, New Hampshire, MIT, Richmond, George Washington, Your Name Here

Support:
DOE Grant for two postdocs plus travel 2011-2014
ODU computer support
Why Data Mining?

• Build on the progress made at JLab on SRC and dynamics of interactions with nuclei at medium Q^2 (see, e.g., most of the experimental talks at this workshop)

• Take advantage of the huge CLAS data set
 - Mostly taken with $A(e,e')$ inclusive trigger

• Take advantage of the otherwise “wasted” time while we upgrade JLab to 12 GeV
Jefferson Lab Site

- north linac
- south linac
- injector
- Hall C
- Hall B
- CLAS
- Hall A
Drift Chambers
35,000 wires
$\sigma_R = 350 \, \mu m$

Superconducting Toroidal Magnet
$\int B dl \equiv 1.7 \, T \cdot m$

Cerenkov Counters
216 channels
99.5% efficient over 50 m2 area

electron beam direction

Time of Flight Counters
500+ channels, 145 ps resolution

Electromagnetic Shower Calorimeters
1700+ channels
$\sigma/E = 10\% / E^{0.5}$
CLAS Event Display

Sectors 1 and 4
CLAS in Maintenance Position
Data Sets with inclusive triggers

<table>
<thead>
<tr>
<th>Run Period</th>
<th>Beam</th>
<th>Energy (GeV)</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2a</td>
<td>e</td>
<td>2.2, 4.4</td>
<td>3He, 4He, C, Fe</td>
</tr>
<tr>
<td>E2b</td>
<td>e</td>
<td>1.1, 4.5, 4.7</td>
<td>3He, Fe</td>
</tr>
<tr>
<td>EG2</td>
<td>e</td>
<td>4.0, 4.7, 5.0</td>
<td>2H, C, Al, Fe, Pb</td>
</tr>
<tr>
<td>G8</td>
<td>gamma</td>
<td><3.1, <4.0</td>
<td>2H, C, Ti, Fe, Pb</td>
</tr>
<tr>
<td>E6</td>
<td>e</td>
<td>5.77</td>
<td>2H</td>
</tr>
<tr>
<td>EG1a,b</td>
<td>e</td>
<td>1.6 to 5.7</td>
<td>NH$_3$, ND$_3$, C</td>
</tr>
<tr>
<td>E5</td>
<td>e</td>
<td>2.56, 4.23</td>
<td>1H + 2H</td>
</tr>
<tr>
<td>E1e</td>
<td>e</td>
<td>2.04</td>
<td>2H</td>
</tr>
<tr>
<td>EG3</td>
<td>gamma</td>
<td><5.76</td>
<td>2H</td>
</tr>
<tr>
<td>E8 (BoNuS)</td>
<td>e</td>
<td>1.1, 2.2, 4.3, 5.4</td>
<td>1H, 2H, 4He</td>
</tr>
</tbody>
</table>
Topics to investigate

• NN Short Range Correlations with $A(e,e'pN)$
 - A and Q^2 dependence
 - np vs pp
 - Compare NN forward/forward ($x>1$) and forward/backward ($x<1$) events
 - Compare real and virtual photons
 • eg: $\gamma n \rightarrow p\pi^-$ plus a backward proton

• Deuteron $d(e,e'p)n$
 - unpolarized
 - Beam spin asymmetry (A'_{LT}) $d(\bar{e},e'p)n$
 - Beam and target spin asymmetry $\bar{d}(\bar{e},e'p)n$

• Deuteron $d(e,e'p)X$
 - DIS and EMC
More Topics

• **Delta production**
 - Backward emitted Deltas
 • Backward hyperons?
 - Forward Delta++ at $x > 1$
 - Delta production on Quasifree neutron in 3He

• **Color Transparency**
 - Deuteron transverse kinematics
 • Compare pn and pDelta0 final states
 - $\pi^+\pi^-$ vs ρ production in nuclei
 - S_{11} production in nuclei

• Your idea here!
Procedure

1. Explore channels and data sets (year 1-3)
 1. Make existing data easily available
 • Led by data-mining scientist (Gagik Gavalian)
 2. Identify most promising analyses
 • Guided by theorists with DM theory postdoc

2. Repeat low level analysis (‘recook’) some data sets (year 2-3)
 1. Maximize statistics and kinematic coverage
 2. Standardize cuts and corrections
 3. Organized by DM scientist

3. Physics analysis (year 1-3)
 1. Entire DM collaboration
Project Outline

• Collect all CLAS nuclear target data in one place with one interface
• Provide easy access to this data set to participating universities.
• Provide universal analysis tools for all data sets (data selection, momentum corrections, fiducial cuts).
• Provide easy framework for combining data from different data sets.
• Provide SOA based multi-process analysis.
Details:

• Processed data stored in a new (HDF5) format
 - Flexible format
 - All needed run information stored in each file
 - Allows random (non-sequential) access
 - Index “interesting events” to process only those

• Data stored at ODU and accessed using CLARA

• A framework was developed around the HDF5-DST’s (Data Summary Tapes) for easy (UNIFIED) analysis
 - Python front end
 - No programming, compiling, or linking required
 - Transparent implementation of all standard cuts and corrections

• Output flexibility
 - Event stream
 - Ntuples
 - Histograms
Analysis Framework

• **Same** analysis framework for all data sets with Corrections, Fiducial Cuts and Event Constructor modules loaded automatically based on the run info loaded from the file.

• The data will be indexed. The program will read only events that correspond to selection criteria.

• Parallel processing

• The output can be any of these:
 - Event Stream
 - Ntuples
 - Histograms

• Other analysis tools can be deployed to the server, requires a little advanced programming.
How does it work? (python)

gooApp = goopyApplication()
gooApp.setInput('e2:e1:p1:c12')
//gooApp.setInput('file://myEventStream.hdf5')

gooApp.add('APP::set eventselection (11,2212,-211)')
gooApp.add('APP::set fiducialcuts true')
gooApp.add('APP::set momentumcorr true')

//----------------

gooApp.add('NtupleMaker', 'NT1')
gooApp.conf('NT1::set eventbank EVNT')
gooApp.conf('NT1::set ntuplebank NTUP')
gooApp.conf('NT1::variable MxE VECTMASS([b]+[t]-[11])')
gooApp.conf('NT1::variable MxEp VECTMASS([b]+[t]-[11]-[2212])')

//----------------

gooApp.add('HistogramMaker', 'HST1')
gooApp.conf('HST1::set ntuplebank NTUP')
gooApp.conf('HST1::cut cMxE CUT(MxE>2.&&MxE<4.)')
gooApp.conf('HST1::hist H1MXEPCUT HIST(100,0.8,1.4,cMxE)')

//gooApp.runLocal() // Run analysis from local file

gooApp.runServer(20) // Run the analysis on the SERVER with 20 jobs
Data availability: plans

- Will get data from 3 expts within 6 months
- Set up our CLARA service for universal access - tested 11/11/11
- Index the data by event types, target, beam energy and torus current.
 - Event types: (e,e'), (e,e'p), (e,e'pp) ...
 - Speed analysis by only reading selected events
- Setup Fast-MC framework for all data sets.

3 TB disk

- E2b: 29%
- Eg2: 47%
- E2a: 24%
Successful System Test

11 Nov 2011: Made ntuples at ODU using data stored at JLab

Plan: remote user will make ntuples (or histograms or …) using the ODU farm computers from data stored at ODU.
Summary

• First data mining analyses underway
 - Or Hen (next talk)
 - N. Dashyan: a_2 ratios $A(e,e')/d(e,e')$ at $x > 1$
• Grant approved September 2011
• G. Gavalian organizing data to make analysis easy
• Theory postdoc to help interpret results
• Upcoming workshops
 - Feb 2012 at JLab (CLAS meeting Feb 22-25)
 - Summer 2012 at Tel Aviv?
• Join us!
 - Come analyze some data