Proton structure from deeply virtual Compton scattering with the CLAS detector at Jefferson Lab

Gary Smith
garys@jlab.org
Proton Structure

Form Factors
- **Elastic Scattering**

Parton Distribution Functions
- **Deep Inelastic Scattering**

Generalised Parton Distributions
- **Deep Exclusive Reactions**
 (e.g. DVCS)

spatial distributions of currents and charges in the transverse plane

longitudinal momentum distributions of quarks and gluons

correlated transverse spatial and longitudinal momentum distributions of quarks and gluons
Deeply Virtual Compton Scattering (DVCS)

Kinematic Variables

- Q^2: negative four momentum of virtual photon squared
- ξ: 1/2 longitudinal momentum fraction of struck quark
- x: average total momentum fraction of struck quark
- t: four momentum transfer to proton squared

Bjorken scaling regime

- momentum transfer Q^2 large

Handbag approximation

- electron interacts with a single quark

Factorisation

- hard scattering + parameterisation
 - (calculable)
 - (measured)
EG1DVCS experiment

CEBAF Large Acceptance Spectrometer (CLAS) in experimental Hall B

Continuous Electron Beam Accelerator Facility (CEBAF)

Hall B
EG1DVCS experiment

- over 80 days of data taken with polarised proton target
- > 70 fb^{-1} (>20 billion triggers) on proton target
- ~10 x statistics of previous CLAS target spin asymmetry result
- polarised (~85%) electron beam up to 6 GeV
- undergoing analyses include DIS, SIDIS, DVCS, DVMP
EG1DVCS experiment

- **Dynamically polarised target**
 - Accommodates measurement of target spin asymmetry

- **Ammonia NH3/ND3**
 - Proton polarisation ~75%

- **Carbon**
 - Additional targets for background studies

- **Empty**
EG1DVCS experiment

- Inner Calorimeter (IC)

- Enhanced photon acceptance at small angles (4-16 degrees)

Monte Carlo simulation of DVCS photon angle
Particle data cuts

Negatively charged particles

electron ID

\[\frac{e}{p} = \beta \approx 1 \]

Positively charged particles

proton ID

\[\beta = \frac{d}{ct} = \frac{p}{\sqrt{p^2 + M_p^2}} \approx 0 \]

Negatively charged particles
Particle data cuts

Negatively charged particles

electron ID

\[e/p = \beta \approx 1 \]

Positively charged particles

proton ID

\[\beta = \frac{d}{ct} = \frac{p}{\sqrt{p^2 + M_p^2}} \approx 0 \]
Exclusivity data cuts

\(ep \rightarrow epg \)

- Missing energy (GeV)
- Missing photon angle (deg)
- Missing mass \(ep \) (GeV/c^2)
- Missing mass \(epg \) (GeV/c^2)

NH3 (polarised protons)

Scaled Carbon (background studies)
Asymmetries

$$\frac{d\sigma}{dx_B dy dt d\phi d\varphi} \propto |T_{BH}|^2 + |T_{DVCS}|^2 + I$$

Bethe-Heitler Process (BH)
Asymmetries

\[
\frac{d\sigma}{dx_B dy dt d\phi d\varphi} \propto |T_{BH}|^2 + |T_{DVCS}|^2 + \mathcal{I}
\]

\[
\mathcal{I} \propto \sum_{n=0}^{3} \left[c_n^T \cos(n\phi) + s_n^T \sin(n\phi) \right]
\]

\[A_{UL} = \frac{d\sigma_{\rightarrow} - d\sigma_{\leftarrow}}{d\sigma_{\rightarrow} + d\sigma_{\leftarrow}} \sim \frac{x_B}{y} \frac{s_{1,LP}}{c_{0, unp} + \ldots} \sin(\phi)\]

Fourier deconvolution
(Belitsky, Mueller, Kirchner 2002
Nuclear Physics B)

Target Spin Asymmetry
(longitudinal polarisation)

Asymmetries → Fourier coefficients → Compton Form Factors → GPDs
Asymmetries

Fit function \(p_0 \sin \phi / (1 + p_1 \cos \phi) \)

\[\chi^2 / \text{ndf} = 3.823 / 9 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0)</td>
<td>0.1585 ± 0.0074</td>
</tr>
<tr>
<td>(p_1)</td>
<td>-0.3262 ± 0.0704</td>
</tr>
</tbody>
</table>

Beam Spin Asymmetry (Integrated)

\[A_{LU} = \frac{d\sigma^\rightarrow - d\sigma^\leftarrow}{d\sigma^\rightarrow + d\sigma^\leftarrow} = \frac{1}{P_B} \frac{N^\rightarrow - N^\leftarrow}{N^\rightarrow + N^\leftarrow} \]
Asymmetries

Target Spin Asymmetry (binned in x_B)

$$A_{UL} = \frac{d\sigma \Rightarrow - d\sigma \Leftarrow}{d\sigma \Rightarrow + d\sigma \Leftarrow} = \frac{1}{P_T D} \frac{N \Rightarrow - N \Leftarrow}{N \Rightarrow + N \Leftarrow}$$

Fit function $p_0 \sin \phi + p_1 \sin 2\phi$

- Black squares: previous result (Chen PRL 2006)
- Blue circles: Chi-squared fit
- Red circles: Maximum Likelihood fit

Dashed lines are VGG model predictions (Vanderhagen et al)

$$x_B^{lab} = \frac{Q^2}{2M_p(E - E')}$$
Conclusions

- GPDs are accessible through DVCS spin asymmetries and give access to new information about proton structure.

- Beam, Target and Double Spin Asymmetry amplitudes are used to constrain Compton Form Factors which are used to measure GPDs.

- EG1DVCS data accommodates precise measurements of asymmetry amplitudes as a function of DVCS kinematics.

- From 2015 experiments will begin with CLAS12.

- Higher Q^2 available and forward focused design will suit DVCS and other exclusive channels (e.g. DVMP).
Backup Slides
Kinematic coverage

![Kinematic coverage diagram]

- **Motivation**
- **Experiment**
- **Analysis**
- **Results**
- **Conclusions**
CLAS detector

Electron Beam
longitudinally polarised (~80%)
with energies up to 6 GeV

Drift Chambers
track reconstruction
and particle ID

Electromagnetic Calorimeters (EC)
primary electron triggering, pion rejection
and neutral particle detection

Cherenkov Counters
electron ID

Scintillation Counters
time of flight
Asymmetries and Compton Form factors

\[A_{UL}(\phi) \sim \frac{x_B}{y} \frac{s_{1,LP}^{T}}{c_{BH}} \sin(\phi) \]
\[\propto \Im \left\{ F_1 \tilde{\mathcal{H}} + \frac{x_B}{2-x_B} (F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2} \mathcal{E} \right) + \ldots \right\} \sin(\phi) \]
\[A_{LU} \propto \Im \left\{ F_1 \mathcal{H} + \frac{x_B}{2-x_B} (F_1 + F_2) \left(\mathcal{H} - \frac{\Delta^2}{4M^2} F_2 \mathcal{E} \right) + \ldots \right\} \sin(\phi) \]
\[A_{LL}(\phi) \sim \frac{x_B}{y} \frac{c_{0,LP}^{BH}}{c_{BH,unp}^{T}} + \frac{c_{0,LP}^{T}}{c_{BH}^{T}} + (c_{1,LP}^{BH} + c_{1,LP}^{T}) \cos(\phi) \]
\[\propto \Re \left\{ F_1 \tilde{\mathcal{H}} + \frac{x_B}{2-x_B} (F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2} \mathcal{E} \right) + \ldots \right\} \]

<table>
<thead>
<tr>
<th>Asymmetry Amplitude</th>
<th>Contributing Fourier-Coefficient</th>
<th>Twist Level</th>
<th>CFF Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{UL}^\sin(\phi))</td>
<td>(s_{1,LP}^{T})</td>
<td>2</td>
<td>(\Im m C_{LP}^{T})</td>
</tr>
<tr>
<td>(A_{UL}^{\sin(2\phi)})</td>
<td>(s_{2,LP}^{T})</td>
<td>3</td>
<td>(\Im m C_{LP}^{DVCS})</td>
</tr>
<tr>
<td>(A_{UL}^{\sin(3\phi)})</td>
<td>(s_{3,LP}^{T})</td>
<td>2</td>
<td>(\Re C_{LP}^{T})</td>
</tr>
<tr>
<td>(A_{LL}^{\cos(0\phi)})</td>
<td>(c_{0,LP}^{T})</td>
<td>2</td>
<td>(\Re C_{LP}^{DVCS})</td>
</tr>
<tr>
<td>(A_{LL}^{\cos(2\phi)})</td>
<td>(c_{2,LP}^{T})</td>
<td>3</td>
<td>(\Re C_{LP}^{T})</td>
</tr>
<tr>
<td>(A_{LU}^{\sin(\phi)})</td>
<td>(s_{1,u}^{T})</td>
<td>2</td>
<td>(\Im m C_{u}^{T})</td>
</tr>
<tr>
<td>(A_{LU}^{\sin(2\phi)})</td>
<td>(s_{2,u}^{T})</td>
<td>3</td>
<td>(\Im m C_{u}^{DVCS})</td>
</tr>
</tbody>
</table>

Dominant terms at twist level 2 for CLAS kinematics.
Target

- four cells on insert controlled by stepper motor
- Dynamic Nuclear Polarisation
 - target cooled to 1K using Helium
 - uniform 5T field $\Delta B/B \sim 10^{-4}$
- polarisation monitored with NMR system
- precise value: compare elastic and measured elastic asymmetries
Inner Calorimeter (IC)

- 424 lead tungstate tapered crystals
- light measurement with Avalanche Photodiodes (APDs)
- laser system to monitor gain changes with temperature
- low noise (7-8 MeV) fast pre-amps
- placed in the centre of CLAS ~65cm from target
- angular coverage of 4-16 degrees