Plans to measure J/ψ photoproduction and TCS on the proton at CLAS12

Pawel Nadel-Turonski

Jefferson Lab

Int. Workshop on using Heavy Flavors to Probe New Hadron Spectroscopies/Dynamics, Busan, Korea, November 18-21, 2012
Outline

Introduction

\(J/\psi \) photoproduction near threshold

- Gluonic structure of the nucleon at large \(x \)
- Behavior of cross section near threshold is unknown
 - CLAS12 will provide the first results
- Future measurements with nuclear targets?

Timelike Compton Scattering (TCS)

- Timelike-spacelike correspondence and universality of GPDs
- Real and imaginary parts of Compton form factors for valence quarks
Approved ep → e'pe^+e^- program for CLAS12

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Physics</th>
<th>Contact</th>
<th>Rating</th>
<th>Days</th>
<th>Group</th>
<th>Energy</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E12-06-108</td>
<td>Hard exclusive electro-production of π0, η</td>
<td>Stoler</td>
<td>B</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-112</td>
<td>Proton's quark dynamics in SIDIS pion production</td>
<td>Avakian</td>
<td>A</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-119</td>
<td>Deeply Virtual Compton Scattering</td>
<td>Sabatie</td>
<td>A</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-003</td>
<td>Excitation of nucleon resonances at high Q2</td>
<td>Gothe</td>
<td>B+</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-005</td>
<td>Hadron spectroscopy with forward tagger</td>
<td>Battaglieri</td>
<td>A-</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-12-001</td>
<td>Timelike Compton Scatt. & J/ψ production in e^+e^-</td>
<td>Nadel-Turonski</td>
<td>A-</td>
<td>100+20</td>
<td></td>
<td>11 GeV</td>
<td>Liquid H₂</td>
</tr>
<tr>
<td>E12-12-007</td>
<td>Exclusive φ meson electroproduction with CLAS12</td>
<td>Stoler, Weiss</td>
<td>B+</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Unpolarized proton target will be first to run
- Experiment E12-12-001 for e^+e^- physics was approved at the last PAC meeting
- Spectroscopy (119 PAC days) and e^+e^- (100+20 days) experiments drive the total beam time for proton running (119+20 days), which can be shared by all.
- Approved beam time corresponds to more than a year of actual running
Partons in the nucleon

Elastic form factors
Transverse spatial distributions
(Naively Fourier transform of Q^2 or t)

Parton Distribution Functions
Longitudinal momentum distributions

Generalized Parton Distributions
A unified description of partons (quarks and gluons) in momentum and impact parameter space
Generalized Parton Distributions (GPDs)

Experimental Kinematics
- GPDs are measured in exclusive processes
- Q^2 is the momentum transfer from the electron
- t is the momentum transfer to the nucleon
- 2ξ is the difference between initial and final momentum of the struck parton

Elastic Form Factors
\[
\int_{-1}^{1} dx \, H(x, \xi, t) = F_1(t) \quad \int_{-1}^{1} dx \, \tilde{H}(x, \xi, t) = g_A(t)
\]
\[
\int_{-1}^{1} dx \, E(x, \xi, t) = F_2(t) \quad \int_{-1}^{1} dx \, \tilde{E}(x, \xi, t) = h_A(t)
\]

Parton Distribution Functions (PDFs)
\[
H(x, \xi=0, t=0) = q(x)
\]
\[
\tilde{H}(x, \xi=0, t=0) = \Delta q(x)
\]

E, \tilde{E} don't appear in DIS (nucleon helicity flip)
Charmonium as a probe of nucleon's color field

At high Q^2 $c\bar{c}$ is produced in small-size configurations

- c.f. color transparency
- Local probe of color field

J/ψ photoproduction

- Probes distances $\approx 1/\sqrt{Q^2 + M_{J/\psi}^2} \approx 1/M_{J/\psi}$
- J/ψ radius much smaller than nucleon: $r_{J/\psi} \sim 0.2 - 0.3$ fm $<< 1$ fm
- Transverse size in light-cone wave function: $<r_T^2> = 2/3 <r^2>$
- Small-size configurations dominate, but corrections could be important
Exclusive J/ψ kinematics near threshold

Four-momentum transfer to the nucleon

\[t = -\left(\zeta^2 m_N^2 + \Delta_T^2\right)/(1 - \zeta) \]

- \(\zeta \) is the „plus“ momentum transfer
 - light cone variables
- \(\Delta_T \) is the transverse momentum transfer
- \(t_{\min} \) at threshold is 2.2 GeV^2

C. Weiss, Non-perturbative forces in QCD, Temple U., 26-28 March 2012
J/ψ production at high vs. low W (= \(\sqrt{s} \))

J/ψ production at high W

- Access to nucleon's gluon GPD at small \(x \)
 - \(t_{\text{min}} \) and \(\zeta \) small, well understood diffractive process
 - Measurements at EIC, HERA, COMPASS, FNAL

J/ψ production near threshold

- \(t_{\text{min}} \) and \(\zeta \) large, implies large skewness \(x_1 - x_2 \)

- Natural interpretation in terms of a gluonic form factor sensitive to non-perturbative gluon field
 - analogous to high-\(t \) elastic \(eN \) scattering

- Amplitude constant, but cross section near threshold suppressed by large \(t_{\text{min}} \)

Weiss, Strikman
Enhancement instead of suppression near threshold?

- Based on the Cornell point, Brodsky et al. instead suggest a flattening out near threshold – diagram on the right?

- CLAS12 can easily answer this question.

- For rate predictions, a conservative estimate more akin to the red curve was used for E12-12-001.
Exclusive quasi-real photoproduction in CLAS12

- Low-Q^2 events are reconstructed by applying cuts on the transverse momentum of the missing beam electron.

- Exclusivity is ensured by detection of all produced final-state particles, and application of a missing mass cut.
Detection of the exclusive final state in CLAS12

- The leptons pairs are detected and identified using the High-Threshold Cherenkov Counter (HTCC) and the Forward Electromagnetic Calorimeter (FEC).

- Pairs with one lepton below the HTCC pion threshold of 4.9 GeV/c will have a pion pair rejection factor of $2 \cdot 10^7$.

- Proton kinematics and acceptance are shown on the right.
Acceptance and yields for J/ψ in CLAS12

- CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.

\[E_\gamma > 9 \text{ GeV} \]

\[9.92 \text{ GeV} < E_\gamma < 11 \text{ GeV} \]

Bethe-Heitler + J/ψ

100 days at \(10^{35} \text{ cm}^{-2}\text{s}^{-1}\)
Projected results – exclusive J/ψ production

Statistical uncertainties for 100 days at a luminosity of 10^{35} cm$^{-2}$s$^{-1}$

Uncertainties for the total cross section assuming the most conservative prediction

t-dependence in narrow bins of s for a total cross section given by the lower curve on the left
Projected results – “inclusive” J/ψ production

Statistical uncertainties at a luminosity of 10^{35} cm$^{-2}$s$^{-1}$

Filled squares: 100 days Open squares: 30 days

- Excellent benchmark for studies of detector efficiency
 - Nominal acceptance for $e^+ e^-$ final state identical for both torus polarities
Approved CLAS12 beam time with nuclear targets

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Physics</th>
<th>Contact</th>
<th>Rating</th>
<th>Days</th>
<th>Group</th>
<th>Energy</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>E12-07-104</td>
<td>Neutron magnetic form factor</td>
<td>Gilfoyle</td>
<td>A-</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR12-11-109</td>
<td>Dihadron DIS production</td>
<td>Avakian</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-007a</td>
<td>Study of partonic distributions in SIDIS kaon production</td>
<td>Hafidi</td>
<td>A-</td>
<td>56</td>
<td>90</td>
<td>11</td>
<td>liquid D2 target</td>
</tr>
<tr>
<td>E12-09-008</td>
<td>Boer-Mulders asymmetry in K SIDIS w/ H and D targets</td>
<td>Contalbrigo</td>
<td>A-</td>
<td>TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-11-003</td>
<td>DVCS on neutron target</td>
<td>Niccolai</td>
<td>A</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-109</td>
<td>Longitudinal Spin Structure of the Nucleon</td>
<td>Kuhn</td>
<td>A</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-119(b)</td>
<td>DVCS on longitudinally polarized proton target</td>
<td>Sabatie</td>
<td>A</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-07-107</td>
<td>Spin-Orbit Correl. with Longitudinally polarized target</td>
<td>Avakian</td>
<td>A-</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR12-11-109</td>
<td>Dihadron studies on long. polarized target</td>
<td>Avakian</td>
<td>-</td>
<td>170</td>
<td>11</td>
<td>NH3 ND3</td>
<td></td>
</tr>
<tr>
<td>E12-09-007(b)</td>
<td>Study of partonic distributions using SIDIS K production</td>
<td>Hafidi</td>
<td>A-</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-09-009</td>
<td>Spin-Orbit correlations in K production w/ pol. targets</td>
<td>Avakian</td>
<td>B+</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E12-06-106</td>
<td>Color transparency in exclusive vector meson production</td>
<td>Hafidi</td>
<td>B+</td>
<td>60</td>
<td>60</td>
<td>11</td>
<td>Nuclear</td>
</tr>
<tr>
<td>E12-06-117</td>
<td>Quark propagation and hadron formation</td>
<td>Brooks</td>
<td>A-</td>
<td>60</td>
<td>60</td>
<td>11</td>
<td>Nuclear</td>
</tr>
<tr>
<td>E12-10-102</td>
<td>Free Neutron structure at large x</td>
<td>Bueltman</td>
<td>A</td>
<td>40</td>
<td>40</td>
<td>11</td>
<td>Gas D2</td>
</tr>
</tbody>
</table>
Timelike Compton Scattering (TCS)

Timelike-spacelike correspondence and the universality of GPDs

- Of fundamental importance for the GPD program

Real (and imaginary) part of Compton amplitude

- Straightforward access through azimuthal asymmetry of lepton pair
- Input for global analysis of Compton Form Factors (and GPDs)
Deep Inelastic Scattering (DIS) and Drell-Yan

- The spacelike DIS and timelike Drell-Yan processes both factorize into a partonic cross section and a Parton Distribution Function (PDF)
 - Measurements of both demonstrated the universality of PDFs
DVCS and TCS

(spacelike) Deeply Virtual Compton Scattering

Timelike Compton Scattering

- In DVCS there is a similar factorization at the amplitude level into a partonic amplitude and a Generalized Parton Distribution (GPD)
 - Measuring both spacelike DVCS and Timelike Compton Scattering (TCS) can test the universality of GPDs
Real part at large x important for GPD models

\[\tau = \frac{Q'^2}{s - M_p^2} \]

\[\eta = \frac{\tau}{2 - \tau} \]

τ and η are the TCS equivalents of Bjorken x and the skewness ξ.

$Q'^2 = M^2_{e^+e^-}$ is the timelike virtuality of the outgoing photon (→ hard scale).
Photoproduction of lepton pairs

- TCS and Bethe-Heitler (BH) processes contribute
- TCS cross section is smaller than BH in JLab 12 GeV kinematics
- The interference term is enhanced by the BH and easy to isolate
TCS-BH interference

\[
\frac{d \sigma^4}{dQ'^2 \, dt \, d(\cos \theta) \, d\phi} = |BH|^2 + I(BH \cdot TCS) + |TCS|^2
\]

- Under lepton charge conjugation:
 - Compton and BH amplitudes are even
 - Interference term is odd
 \[
 \text{Easy to project out only the interference term}
 \]

- Direct access to interference term through angular distribution of the lepton pair
 - cosine and sine moments
Kinematics

- $k, k' = \text{momentum of } e^-, e^+$
- $\theta = \text{angle between the scattered proton and the electron}$
- $\phi = \text{angle between lepton scattering- and reaction planes}$

\[
\frac{d\sigma_{BH}}{dQ'^2 dt d\cos \theta} \approx 2\alpha^3 \frac{1 + \cos^2 \theta}{-tQ'^4} \frac{1 - \cos^2 \theta}{1 - \cos^2 \theta} \left(F_1(t)^2 - \frac{t}{4M_P^2} F_2(t)^2 \right)
\]

- For θ close to 0 and π, BH becomes large. A cut is usually applied.
TCS cross section and the interference term

\[
\frac{d\sigma_{TCS}}{dQ'^2 \, d\Omega \, dt} \approx \frac{\alpha^3}{8\pi} \frac{1}{s^2} \frac{1}{Q'^2} \left(\frac{1 + \cos^2 \theta}{4} \right) 2(1 - \xi^2) |\mathcal{H}(\xi, t)|^2
\]

\[
\frac{d\sigma_{INT}}{dQ'^2 \, dt \, d\cos \theta \, d\varphi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1 - \tau}} \cos \varphi \frac{1 + \cos^2 \theta}{\sin \theta} \Re \tilde{M}^{--}
\]

\[
\tilde{M}^{--} \approx \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} [F_1(t) \mathcal{H}(\xi, t)]
\]

\[
\mathcal{H}(\xi, t) = \sum_q e_q^2 \int_{-1}^{1} dx \left(\frac{1}{\xi - x + i\epsilon} - \frac{1}{\xi + x + i\epsilon} \right) H^q(x, \xi, t)
\]
The D-term and the pressure balance in the nucleon

\[H(x, \xi) = H_{DD}(x, \xi) + \theta(\xi - |x|) \frac{1}{N_f} D\left(\frac{x}{\xi}\right) \]

- The D-term contributes only to the real part of the Compton amplitude
First measurements at 6 GeV

• Cosine moment of weighted cross sections

\[
\frac{dS}{dQ^2 dt d \varphi} = \int \frac{L(\theta, \varphi)}{L_0(\theta)} \frac{d \sigma}{dQ^2 dt d \varphi} d \theta
\]

\[
R = \frac{2 \int_0^{2\pi} d \varphi \cos \varphi \frac{dS}{dQ^2 dt d \varphi}}{\int_0^{2\pi} d \varphi \frac{dS}{dQ^2 dt d \varphi}}
\]

• Numerator is proportional to \(\overline{M} \cdot \overline{M} \)
 - \(\cos \varphi \) part of interference term

• \(R \) can be compared directly with GPD models

• Analysis of 6 GeV data with tagged real photons is underway

Comparison of results by R. Paremuzyan et al from e1-6/e1f with calculations by V. Guzey.
From 6 to 12 GeV

- 6 GeV kinematics are limited to $M_{e^+e^-} < 2$ GeV.
- 12 GeV extends this mass (Q') range up to 3 GeV

- 6 GeV data were important for developing methods

- 12 GeV will provide
 - A much larger reach in s and Q'^2
 - Higher luminosity and more statistics for multi-dimensional binning
 - A possibility to avoid meson resonances in the e^+e^- final state
 - Data can be taken in the resonance-free region between the ρ' and J/Ψ
Projected results – cosine moment R'

Statistical uncertainties for 100 days at a luminosity of 10^{35} cm$^{-2}$s$^{-1}$

- Uncertainties for R', integrated over the CLAS12 acceptance, for two bins in photon energy, for the lowest Q'^2 bin above the ρ' resonance.
- Different values of the D-term are only shown for the double distribution.
Summary

CLAS12 experiment E12-12-001 will measure TCS and J/Ψ

J/Ψ photoproduction near threshold

- Establish reaction mechanism
- Access to gluonic structure of the nucleon at large x

Timelike Compton Scattering (TCS)

- Test universality of GPDs
- Straightforward access to real part of Compton form factors
Backup
Jefferson Lab PAC 39 Proposal
Timelike Compton Scattering and J/ψ photoproduction on the proton in e^+e^- pair production with CLAS12 at 11 GeV

¹Catholic University of America, Washington, D.C. 20064
²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
³Yerevan Physics Institute, 375036 Yerevan, Armenia
⁴Institut de Physique Nucléaire d’Orsay, IN2P3, BP 1, 91406 Orsay, France
⁵Hampton University, Hampton, Virginia 23668
⁶Ohio University, Athens, Ohio 45701
⁷Old Dominion University, Norfolk, Virginia 23529
⁸University of South Carolina, Columbia, South Carolina 29208
⁹Florida International University, Miami, Florida 33199
¹⁰CPhT, École Polytechnique, 91128 Palaiseau, France
¹¹CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
¹²Norfolk State University, Norfolk, Virginia 23504
¹³University of Connecticut, Storrs, Connecticut 06269
¹⁴National Center for Nuclear Research (NCBJ), Warsaw, Poland
¹⁵LPSC Grenoble, 38000 Grenoble, France
(Dated: May 4, 2012)

*Co-spokesperson
†Contact person: turonski@jlab.org
Probing GPDs through Compton scattering

(Im, $x=\xi$)
DVCS: spin asymmetries
(TCS with polarized beam)

(DVCS: charge asymmetry)

(Re)
TCS: azimuthal asymmetry
DVCS: charge asymmetry

$H(x, \xi, 0)$

(Im, $x \neq \xi$, $x < |\xi|$)
Double DVCS

(|Re|^2)
DVCS: cross section
Interference term

To leading order, in terms of helicity amplitudes:

\[
\frac{d\sigma_{INT}}{dQ'^2 dt d(cos \theta) d\varphi} = -\frac{\alpha^3_{em}}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\cos \varphi \frac{1 + \cos^2 \theta}{\sin \theta} \text{Re} \tilde{M}^{--} + \cos 2\varphi \sqrt{2} \cos \theta \text{Re} \tilde{M}^{0-} + \cos 3\varphi \sin \theta \text{Re} \tilde{M}^{+-} + O\left(\frac{1}{Q'}\right) \right],
\]

\[
-\frac{\alpha^3_{em}}{4\pi s^2} \frac{1}{-t} \frac{M}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \left[\sin \varphi \frac{1 + \cos^2 \theta}{\sin \theta} \text{Im} \tilde{M}^{--} - \sin 2\varphi \sqrt{2} \cos \theta \text{Im} \tilde{M}^{0-} - \sin 3\varphi \sin \theta \text{Im} \tilde{M}^{+-} + O\left(\frac{1}{Q'}\right) \right],
\]

\[\nu:\text{ circular polarization of incoming photon also gives access to imaginary part}\]

\[
\frac{1}{2} \sum_{\lambda, \lambda'} |M_{\lambda', \lambda^-}^{\lambda^-}|^2 = (1 - \eta^2) \left(|\mathcal{H}_1|^2 + |\mathcal{H}_1^*|^2 \right) - 2\eta^2 \text{Re} (\mathcal{H}_1^* \mathcal{E}_1 + \mathcal{H}_1 \mathcal{E}_1^*) - \left(\eta^2 + \frac{t}{4M^2} \right) |\mathcal{E}_1|^2 - \eta^2 \frac{t}{4M^2} |\bar{\mathcal{E}}_1|^2.
\]
• CLAS12 has excellent acceptance for photoproduction of lepton pairs with a large invariant mass over a wide range in s and t.
Acceptance in the TCS angles θ_{CM} and ϕ_{CM}

$E_\gamma = 9.39$ GeV, $Q^2 = 4.5$ GeV2

Generated events. Regions dominated by BH fall outside of the contour indicating the CLAS acceptance.

Accepted events for four t-bins. The observable R' is integrated over the CLAS acceptance.
Projected results – cross section

Statistical uncertainties for 100 days at a luminosity of 10^{35} cm$^{-2}$s$^{-1}$

- The unpolarized and polarized four-fold differential TCS+BH cross sections will provide input for global analysis of Compton Form Factors.

- The narrow J/ψ peak on the right is very prominent.