Deeply Virtual Compton Scattering from the Neutron with CLAS and CLAS12

Daria Sokhan

IPN Orsay, France on behalf of the CLAS Collaboration

SPIN 2012 – JINR, Dubna, Russia 21st September 2012

Nucleon Structure

Longitudinal momentum distributions of quarks

 $f(\mathbf{x})$

Generalised Parton Distributions (GPDs)

Deep Exclusive Reactions

N'

 $f(x,b_{\perp})$

 b_{\perp}

+

e

 δz

xp

х

distributions

Deeply Virtual Compton Scattering

* GPDs relate transverse position of partons to longitudinal momentum.

contain information on angular momentum of quarks

* Can be accessed in measurements of cross-sections and asymmetries in, eg: Deeply Virtual Compton Scattering (DVCS).

$$Q^{2} = -(e - e')^{2}$$
 $t^{2} = -(p - p')^{2}$

 $x \pm \xi$ longitudinal momentum $\xi \cong \frac{x_B}{2 - x_B}$ fractions of quarks

* At high exchanged Q², access to four GPDs: $E_q, \tilde{E}_q, H_q, \tilde{H}_q$ (x, ξ, t)

Extracting GPDs from DVCS			
Experiments	mentally accessible in DVCS spin ries, eg: $A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta \sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}} \checkmark$	e	leptonic`plane hadronic` P plane
Beam, target polarisation	$\xi = x_B^2/(2-x_B)$ $k = t/4M^2$		Proton Neutron
\overrightarrow{e} p/n	$\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{ F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} \} d\phi$	\rightarrow	$Im\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}, \mathcal{E}_{\mathbf{p}}\}$ $Im\{\mathcal{H}_{\mathbf{n}}, \widetilde{\mathcal{H}}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}\}$
e	$\Delta \sigma_{UL} \sim \frac{\sin \phi}{4} \operatorname{Im} \{F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B / 2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \dots \} d\phi$	\rightarrow	$Im\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}$ $Im\{\mathcal{H}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}, \widetilde{\mathcal{E}}_{\mathbf{n}}\}$
e f	$\Delta \sigma_{\mathrm{UT}} \sim \frac{\cos \phi}{2} \operatorname{Im} \{ k(F_2 \mathcal{H} - F_1 \mathcal{E}) + \dots \} d\phi$	\rightarrow	$Im\{\mathcal{H}_{\mathbf{p}}, \mathcal{E}_{\mathbf{p}}\}$ $Im\{\mathcal{H}_{\mathbf{n}}\}$
\overrightarrow{e} \leftrightarrow	$\Delta \sigma_{LL} \sim (\mathbf{A} + \mathbf{B} \cos \phi) \operatorname{Re} \{F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) \\ (\mathcal{H} + x_B / 2\mathcal{E}) \dots \} d\phi$	\rightarrow	$\frac{Re\{\mathcal{H}_{\mathbf{p}}, \widetilde{\mathcal{H}}_{\mathbf{p}}\}}{Re\{\mathcal{H}_{\mathbf{n}}, \mathcal{E}_{\mathbf{n}}, \widetilde{\mathcal{E}}_{\mathbf{n}}\}}$

Neutron DVCS

CLAS @ Jefferson Lab (Virginia, USA)

CEBAF: Continuous Electron Beam Accelerator Facility:

- Duty cycle: ~ 100%
- Energy up to ~6 GeV
- Electron polarisation up to ~85%

CLAS in Hall B:

- Drift chambers
- Toroidal magnetic field
- Cerenkov Counters
- Scintillator Time of Flight
- Electromagnetic
 Calorimeters

Extremely large angular coverage

Neutron DVCS: Eg1-dvcs experiment

Data taken: Feb – Sept 2009

Longitudinally polarised targets:

Beam: polarised electrons

 E_e = 4.7 to 6 GeV polarisation ~ 85%

Proton / neutron pol. ~ 80 / 40 %

NH3 (95 days)

ND3 (33 days)

$$\vec{e} + \vec{d} \rightarrow e' + \gamma + n + (p_s)$$

 $CLAS \longrightarrow$

plus

Exclusive reconstruction of e', N, and γ . Spectator proton identified via missing mass.

Inner Calorimeter → (IC)

high-energy forward photon detection

Particle ID – Electrons

\$ q and p from track-curvature through drift chambers in magnetic field

Separation from π^{-1} : on basis of energy deposit in electromagnetic calorimeter (EC) and number of photoelectrons produced in Cerenkov counters (CC).

E deposit in EC / p vs. p

Particle ID – Photons and Neutrons

DVCS on different targets

A_{LU} – check on proton DVCS in NH_3 and ND_3

Previously measured result on H_2 is in range 0.2 -0.3. F.-X. Girod et al, PRL. 100 (2008) 162002

$$\frac{N^+ - N^-}{P(N^+ + N^-)} \approx 0.23 \pm 0.02$$

Uncorrected for π° contamination

 \rightarrow actual A_{LU} larger!

Deuterium target – smearing due to Fermi motion requires wider data cuts.

$$\frac{N^+ - N^-}{P(N^+ + N^-)} \approx 0.16 \pm 0.02$$

 Π^{o} contamination more significant \longrightarrow measured A_{LU} lower than on NH3.

Neutron DVCS in ND₃ – data cuts I

Deep Inelastic Scattering cuts:

- $4 Q^2 > I \text{ GeV}^2 \qquad 4 E_{\gamma} > 1 \text{ GeV}$
- ♦ W > 2 GeV/c² where W is the missing mass of $(eN \rightarrow e'X)$, isolate resonance region of remaining γN

Neutron DVCS in ND₃ – data cuts II

- $p_n > 0.4 \ GeV/c$ Recoiling nucleon should not have a low p
- ♦ $|\Delta \varphi| < 10^{\circ}$ Coplanarity between γ and N

* γ cone angle < 5° Difference between calculated and measured γ direction

* Missing momentum from $ed \rightarrow e'N'\gamma X$ Should be low for spectator nucleon in quasi-free reaction

$A_{\rm LU}$ and $A_{\rm UL}$ in neutron DVCS on ND_3

Beam-spin asymmetry:

One previous measurement from Hall A @ JLab, $A_{LU} \sim 0$. Big statistical and systematic uncertainties, slightly different kinematic region.

Jefferson Lab @ 12 GeV

CEBAF: Continuous Electron Beam Accelerator Facility, upgrade from current 6 GeV to 12 GeV underway.

• Open up much larger phase space in Q^2 and x_B

✤ Hall B – 11 GeV to the upgraded detector system CLAS12

Scheduled completion ~ 2014

A_{LU} in Neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS is very sensitive to J_u, J_d

Wide coverage needed!

Fixed kinematics: $x_B = 0.17$ $Q^2 = 2 \text{ GeV}^2$ $t = -0.4 \text{ GeV}^2$

CLAS12

Acceptance for charged particles:

- Central (CD) $40^{\circ} < \theta < 135^{\circ}$
- Forward (FD) $5^{\circ} < \theta < 40^{\circ}$

Acceptance for **photons**:

- IC $2^{\circ} < \theta < 5^{\circ}$
- EC $5^{\circ} < \theta < 40^{\circ}$

High luminosity & large acceptance:

Concurrent measurement of deeply virtual exclusive, semi-inclusive, and inclusive processes

Recoil DVCS neutrons in CLAS12

★ Beam-spin asymmetry in neutron DVCS at 11 GeV – extremely sensitive to J_q

* Exclusive reconstruction of the DVCS process $en \rightarrow e'n'\gamma$ require detection and measurement of all three final state particles.

Over 80% of neutrons recoil at $\theta_{lab} > 40^\circ$ with peak momentum at ~ 0.4 GeV/c.

Requires central neutron detector sensitive to $0.2 < p_n < 1.2 \text{ GeV/c.}$

Simulation at E_e = 11 GeV

Neutron Detector for CLAS12

Available:

- * 10 cm of radial space
- in a high magnetic field (~ 5T)

Detector proposal approved:

- * Plastic scintillator barrel:
 - 3 layers, 48 paddles in each

- * Length ~ 70 cm, inner radius 28.5 cm
- * Long (~ 1.5 m) light-guides
- * PMT read-out upstream, out of high B field

Light guides

U-turn light guide

Scintillators

CND Simulation (Geant 4)

Proposal Accepted in 2011 - detector under construction at Orsay for 2014.

Summary and Conclusions

GPDs provide a 3D image of the internal dynamics of the nucleon and are experimentally accessible in exclusive reactions such as DVCS.

A measurement of the **beam-spin asymmetry in DVCS** on the **neutron**, particularly in the kinematic range opening up with CLAS12, will offer important information on the composition of nucleon spin.

The Central Neutron Detector is under construction – to allow exclusive reconstruction of neutron DVCS with CLAS12.

A preliminary extraction of DVCS on **deuterium** @ 6GeV is underway – indications of a low measurable beam-spin and target-spin asymmetry on the neutron.

Thank you!

Back-up slides

Accessing GPDs through DVCS

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{GPDs \ (x,\xi,t)}{x \pm \xi + i\varepsilon} dx + \dots \sim P \int_{-1}^{+1} \frac{GPDs \ (x,\xi,t)}{x \pm \xi} dx \pm i\pi GPDs \ (\pm\xi,\xi,t) + \dots$$

A_{LU} from *neutron DVCS* **with CLAS12**

$$\vec{e} + d \rightarrow e' + n + \gamma + (p_s)$$

 $\Delta \sigma_{LU} \sim sin \phi \ Im \{F_1 \mathcal{H} + \xi (F_1 + F_2) \mathcal{H} \text{-} \widetilde{k} F_2 \underline{\mathcal{E}} \} d\phi$ The most sensitive observable to the GPD E

