HDice, the Polarized Solid HD Target in the Frozen Spin Mode for Experiments with CLAS

Xiangdong Wei
Thomas Jefferson National Accelerator Laboratory

The 20th INTERNATIONAL SYMPOSIUM on Spin Physics (SPIN2012)
JINR, Dubna, Russia
September 17 - 22, 2012
Collaborators

- Jefferson Lab

- Universita di Roma “Tor Vergata” and INFN-Sezione di Roma2
 A. D'Angelo

- University of Virginia
 C. Hanretty, P. Peng

- Carnegie-Mellon University
 D. Ho

- Norfolk State University
 M. Khandaker

- Blaise Pascal University
 V. Laine

- University of Connecticut
 T. O'Connell

- Catholic University of America
 N. Walford

- and the CLAS Collaboration
Topics

- How the HDice target works
- Target Production
- Performance of HDice target
- \(\gamma + \)HDice results with CLAS
- \(e + \)HDice test results
- Conclusion
Topics

- How the HDice target works
 - Target Production
 - Performance of HDice target
 - γ+HDice results with CLAS
 - e+HDice test results
 - Conclusion
Polarizing HD: the rotational levels of the solid hydrogens

At liquid helium temperature and below, only J=1 and 0 states are occupied, for H$_2$ and D$_2$, and only J=0 is populated for HD.

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H$_2$, HD and D$_2$ system. The symmetries of the nuclear spin wavefunction, c$_S$, are indicated.
Polarizing HD: cross coupling between H and D, POLARIZING

At $J=0$ states, protons and deuterons are decoupled from the lattice.

\Rightarrow long relaxation time or non-polarizable

\Rightarrow help from $J=1$ H_2 and D_2 through spin-wave is needed for polarizing HD

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H_2, HD and D_2 system. The symmetries of the nuclear spin wavefunction, c_s, are indicated.
The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H$_2$, HD and D$_2$ system. The symmetries of the nuclear spin wavefunction, χ_s, are indicated.
Heat generation due to $L=1$ to $L=0$ Conversion

Heat generation ($J=1$ to $J=0$): 2.6mW/mole for H_2 and 0.46mW/mole for D_2.

\Rightarrow For HDice at $c_1 \sim 0.001$, 0.94μW/target from H_2 and 0.17μW/target from D_2.

\Rightarrow Heat has to be removed from HD in order to polarize HD target

$H_D\text{dice dilution refrigerator cooling power at 10mK : } 10\mu W$ 😊

The relative energy spacing of the low-lying nuclear spin, I, and molecular orbital angular momentum, L, levels in H_2, HD and D_2 system. The symmetries of the nuclear spin wavefunction, c_S, are indicated.
Topics

• *How the HDice target works*
• *Target Production*
• *Performance of HDice target*
• $\gamma+$HDice results with CLAS
• $e+$HDice test results
• Conclusion
Instrumentation: Target Cell

- HDice target cells:
 - 750 × 50μm Al wires
 - pCTFE cell

- Material in the beam path:
 - 77% HD + 17% Al + 6% pCTFE (remove with vertex cuts)
Operation: Target transfer
Operation: Target transfer

- **PD**: (Injecting target, NMR-TE)
- **TC**: (Moving target)
- **DF**: (Polarizing target)
- **SD**: (Storing/transporting target)

Temperature and Magnetic Field Conditions:
- **1.6K, 7T**
- **2K, 2T**
- **0.01K, 15T**
- **2K, 0.1T**
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between PD and DF
Operation: Target transfer

Target transfer between DF and SD
Operation: Target transfer

Target transfer between DF and SD
Operation: G-14 Run at Hall-B

Loading target into IBC and moving IBC inside CLAS
Instrumentation: In-Beam Cryostat

- \(T \): 50mK
- \(B_{//} \): 1.0T
- \(B_{\perp} \): 0.075T
- \(B_{\text{auxiliary}} \): >0.1T
- \(B_{\text{backup}} \): 0.01T

In-Beam Cryostat (IBC)
Topics

- How the HDice target works
- Target Production
- **Performance of HDice target**
- γ+HDice results with CLAS
- e+HDice test results
- Conclusion
Target Polarization Calibration for G-14 Run

HD removed from DF after 3 months Aging at high field and low temp

- Frozen-spin NMR compared to thermal equilibrium (TE) calibration

B field sweep

\[P(H) = 61.3 \pm 1.8\% \]
\[P(D) = 15.5 \pm 0.6\% \]

Number of sweeps: 1 for polarized signals and (typical) \~250 for TE signals
Polarization Manipulation during G-14 Run

Increasing D polarization by spin transfer:

- Brute force (high B/low T) \(\Rightarrow \) \(P_D \sim 15\% \) \((\mu_D / \mu_H \sim 1/3) \)
- 1st forbidden adiabatic fast passage (FAFP) to invert state populations

Zeeman levels of HD

- polarize H
- RF transfer \(P(H) \rightarrow P(D) \)
- requires high RF powers and very uniform fields

- alternative: saturate the FAFP transition
 \(\rightarrow \) equalize \{ \(m_H = +1/2; m_D = -1, 0 \) \(\leftrightarrow \) \{ \(m_H = -1/2; m_D = 0, +1 \) \}
Polarization Manipulation with SFP during G-14 Run

\[
P(H)_{\text{init}} \sim 50\%
\Rightarrow \text{SFP} \Rightarrow
\]

\[
P(H)_{\text{final}} = 28 \pm 1\%
\]

\[
P(D)_{\text{init}} \sim 16\%
\Rightarrow \text{SFP} \Rightarrow
\]

\[
P(D)_{\text{final}} = 27 \pm 1\%
\]
The HDice targets were in frozen spin mode during G-14 Run. Relaxation times was longer than one year at B=0.9T and T<100mK.
Topics

• How the HDice target works
• Target Production
• Performance of HDice target
• $\gamma+$HDice results with CLAS
• $e+$HDice test results
• Conclusion
Clean empty cell (21a) subtraction from $\gamma \ n \rightarrow \pi \ p$

Reconstructed Vertex for HDice Target during G-14 Run

- **Full target cell**
- **Empty cell**
- **HD from full-empty (flux weighted)**

<table>
<thead>
<tr>
<th>zvertex</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25470</td>
<td>-5.185</td>
<td>5.956</td>
</tr>
</tbody>
</table>
On-going Analysis for G-14 Run

identified analysis projects:

\[\gamma \ n (p) \rightarrow K^\circ \Lambda \ (p) \]
\[\gamma \ n (p) \rightarrow K^- \Sigma^+ \ (p) \]
\[\gamma \ n (p) \rightarrow \pi^- p \ (p) \]
\[\gamma \ n (p) \rightarrow \pi^+ \pi^- n (p) \Leftrightarrow \pi^+ \Delta^- (p), \ \pi^- \Delta^+ (p), \ \rho n (p) \]
\[\gamma \ n (p) \rightarrow \pi^+ \pi^- \pi^0 \ n (p) \Leftrightarrow \eta \ n (p), \ \omega \ n (p) \]
\[\gamma \ n (p) \rightarrow \pi^0 \pi^- p \ (p) \]

1st look at data

Beta vs. Momentum
1st look at neutron data from G-14/H Dice (concluded on 05/18/2012)

- $\gamma \tilde{n} (p) \rightarrow \pi^- p (p)$
- E beam-target helicity asymmetry from a few % of the g14 data:

<table>
<thead>
<tr>
<th>W</th>
<th>E asymmetry of $\gamma n \rightarrow \pi^- (p)$ at E_γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1515</td>
<td>$0.7 - 0.8 \text{ GeV}$</td>
</tr>
<tr>
<td>1575</td>
<td>$0.8 - 0.9 \text{ GeV}$</td>
</tr>
<tr>
<td>1630</td>
<td>$0.9 - 1.0 \text{ GeV}$</td>
</tr>
<tr>
<td>1690</td>
<td>$1.0 - 1.1 \text{ GeV}$</td>
</tr>
<tr>
<td>1745</td>
<td>$1.1 - 1.2 \text{ GeV}$</td>
</tr>
<tr>
<td>1795</td>
<td>$1.2 - 1.3 \text{ GeV}$</td>
</tr>
</tbody>
</table>

Preliminary - N. Walford, CUA

SAID extrapolations from proton data
Topics

- How the HDice target works
- Target Production
- Performance of HDice target
- $\gamma+$HDice results with CLAS
- $e+$HDice test results
- Conclusion
Electron Beam Tests for $\vec{e} + \vec{H} \perp D$ runs with CLAS12

D is damaged by radiation, $T_1(D) = 0.2 \text{ d.}$

H is not harmed, $T_1(H) > 50 \text{ d.}$

Beam Heating is the main concern for $H.$

\Rightarrow redesign target cell

build faster beam raster

expected T_1 range at 1 nA after improvements

$t(\text{HD}) \sim 1 \text{ K}$

$t(\text{HD}) \sim 3 \text{ K}$

$T_1 = \alpha / I_e$

H is not harmed, $T_1(H) > 50 \text{ d.}$
Conclusion

• **HDice target has been successfully installed at CLAS.**

• **Performance of HDice target demonstrated a huge potential for photon experiments.**

• **Comparing with the conventional target, which polarizes 80% of the 20% usable material, the HDice has 20% polarization of 80% target material.**

 BUT, G-14 TOOK THE DATA AT 10 TIMES FASTER RATE BECAUSE OF LOW BACKGROUND FROM LOW Z.

• **Electron beam on HD test shown the road of applying transversely polarized HDice target at CLAS12 Era.**