

BARYONS 201

Outline

Background

Theoretical introduction

CLAS EG2

Backup

Background Introduction 2 Theoretical introduction • Glauber model and Coherence Length effect QCD model and Color Transparency 3 Experiments 4 CLAS EG2 Data Analysis Results 5 6 Conclusions

Backup

Outline	Background ●	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Intro	duction						

Color Transparency

is a QCD phenomenon which predicts a reduced level of interaction for reactions where the particle state is produced in a point-like configuration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Background ●	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Intro	duction						

Color Transparency

is a QCD phenomenon which predicts a reduced level of interaction for reactions where the particle state is produced in a point-like configuration.

EG2 experiment using the CLAS detector at Jefferson Lab

The Nuclear Transparency was measured in ρ^0 electro-production through nuclei. A signal of Color Transparency will be an increase of the Nuclear Transparency with a correspondent increase in Q^2

An approximation of scattering through Quantum Mechanics

"High-Energy collision theory", by R.J. Glauber

Using hadron picture for Nuclear Interaction.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

onerence Length effect with the Glauber model

K. Ackerstaff, PRL 82, 3025 (1999) Exclusive ρ^0 electro-production, Coherence length ($\mathit{I_c}$) effect

•
$$I_c = \frac{2\nu}{M_V^2 + Q^2}$$

- Cross section dependence on *I_c*
- Mimics CT signal for incoherent ρ⁰ production

(日)、

э

QCD model and Color Transparency

What is missing in the previous model?

In the Glauber model, that gives a Quantum mechanical description of the interaction with matter, there is no mention of the particles to be considered as a composite system of quarks.

What is missing in the previous model?

In the Glauber model, that gives a Quantum mechanical description of the interaction with matter, there is no mention of the particles to be considered as a composite system of quarks.

Glauber model

No other Q^2 dependence other than the one due to the coherence length effect

Outline	Background 0	Theoretical introduction ○O●	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

Outline	Background 0	Theoretical introduction ○O●	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

Momentum

Each quark, connected to another one by hard gluon exchange carrying momentum of order Q should be found within a distance of the order of $\frac{1}{Q}$

(日)、(四)、(E)、(E)、(E)

Outline	Background 0	Theoretical introduction ○O●	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

Momentum

Each quark, connected to another one by hard gluon exchange carrying momentum of order Q should be found within a distance of the order of $\frac{1}{Q}$

Color Transparency

Such an object is unable to emit or absorb soft gluons \Rightarrow its interaction with the other nucleons is significantly reduced

- Quasi-elastic A(p,2p) [Brookhaven]
- Quasi-elastic A(e,ep) [SLAC and Jlab]
- Di-jets diffractive dissociation. [Fermilab]
- Quasi-elastic D(e,ep) [Jlab CLAS]
- Pion Production ⁴He,($\gamma n \rightarrow p \pi^{-}$) [Jlab]
- Pion Production A(e,e π^+) [Jlab]
- ρ^0 lepto production. [Fermilab, HERMES]
- ρ^0 lepto production & D(e,ep) [Jlab CLAS]

D. Dutta, PRC 68, 021001 (2003) Pion photo-production on ⁴He, ($\gamma n \rightarrow p \pi^{-}$)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

B. Clasie, PRL 99, 242502 (2007) Pion e-production on $^2H, ^{12}C, ^{27}Al, ^{63}Cu$ and ^{197}Au ,

$$\gamma^* p \to n \pi^+$$
$$T = \frac{(\frac{\bar{Y}}{\bar{Y}_{MC}})_A}{(\frac{\bar{Y}}{\bar{Y}_{MC}})_H}$$

 $T=A^{lpha-1}$, with $lpha\sim$ 0.76

HERA positron storage ring at DESY: HERMES

A. Airapetan, PRL 90, 052501 (2003) Measurement of the Nuclear Transparency, incoherent ρ^0 prod. $T_A = P_0 + P_1 Q^2$, with $P_1 = (0.089 \pm 0.046 \pm 0.020) GeV^{-2}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thomas Jefferson Lab: CLAS EG2 experiment

- Electron Beam 5GeV (50 days) & 4GeV (7days)
- Targets: D&Fe, D&C, D&Pb
- Luminosity $\sim 2 x 10^{34} cm^{-2} s^{-1}$

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Eg2	experim	ent target					

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Eg2	experim	ent target					

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Outline	Background O	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Read	rtion						

Outline	O	000	Experiments	€00	Results	Conclusions	Баскир
Deee	L	ينبا المسم مما المن					

Reaction Variables and kinematical cuts

•
$$Q^2 = -(q_{\gamma^*}^{\mu})^2 \sim 4E_e E_{e'} \sin^2(\frac{\theta}{2})$$

• $\nu = E_e - E_{e'}$
• $t = (q_{\gamma^*}^{\mu} - p_{\rho^0}^{\mu})^2$
• $W^2 = (q_{\gamma^*}^{\mu} + p_N^{\mu})^2 \sim -Q^2 + M_p^2 + 2M_p\nu$

Data Selection:

- W > 2 GeV, to avoid the resonance region
- $-t > 0.1 GeV^2$ to exclude coherent production off the nucleus
- $-t < 0.4 GeV^2$ to be in the diffractive region
- $z = \frac{E_{\rho}}{\nu} > 0.9$ to select the elastic process

0 L 0

0.4

0.8

 $M_{\pi+\pi-}\,(GeV)$

1.4

1.8

100

0.6 0.8

M (GeV)

04

1.8

1.4

• The goal of the experiment is to determine the Nuclear Transparency $T^{\rho^0}_A$ as a function of Q^2 and l_c

$$T_A^{\rho^0} = \frac{\left(\frac{N_A^{\rho^0}}{L_m^{int}}\right)}{\left(\frac{N_D^{\rho^0}}{L_D^{int}}\right)}$$

• where L_A^{int} is the integrated luminosity for the target A

$$L_A^{int} = n_A^{nucleons} \frac{Q_{int}}{q_e}$$

l_c dependence of Nuclear Transparency

Nuclear Transparency for Iron and Carbon

	Mod	el Predi	ictions	
Nucleus	GeV^{-2}	KNS	GKM	FMS
С	$0.044 \pm 0.015_{stat} \pm 0.019_{syst}$	0.06	0.06	0.025
Fe	$0.053 \pm 0.008_{stat} \pm 0.013_{syst}$	0.047	0.047	0.032

- B. Z. Kopeliovich, J. Nemchik and I. Schmidt, Phys. Rev. C 76, 015205 (2007).
- K. Gallmeister, M. Kaskulov and U. Mosel, Phys. Rev. C 83, 015201 (2011).
- L. Frankfurt, G. A. Miller and M. Strikman, Private Communication based on Phys. Rev. C 78, 015208 (2008).

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup

Conclusions

- We see a rise in the Transparency of ρ^0 electro-production with increasing Q^2
- We have different model calculations by KNS, GKS, FMS which well interpret the data.

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup

Conclusions

- We see a rise in the Transparency of ρ^0 electro-production with increasing Q^2
- We have different model calculations by KNS, GKS, FMS which well interpret the data.
- Approved experiment with CLAS12 at the future 12 GeV upgraded Jefferson Laboratory with increased Q² range

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup

「私は言語」で「全て言語」「日本のない」

Conclusions

- We see a rise in the Transparency of ρ^0 electro-production with increasing Q^2
- We have different model calculations by KNS, GKS, FMS which well interpret the data.
- Approved experiment with CLAS12 at the future 12 GeV upgraded Jefferson Laboratory with increased Q² range
- Thank you for your time

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Back	up Slide	es					

• Glauber model

- *l_c* effect
- *l_c* effect Hermes data
- *l_c* effect Hermes, EG2 data
- QCD model
 - PLC definition
 - PLC and Nuclear filtering
 - Color Transparency

• Data Analysis

- Lengths in the reaction
- Kinematical cuts
- Diffractive region test
- Simulation, Background,Acceptance
- Extraction of the Nuclear Transparency
- Results
 - FMS Model
 - GKM Model
 - KNS Model
 - Comparison ρ^0 data and π data (FMS)

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Glaul	ber mod	el					

An approximation of scattering through Quantum Mechanics

"High-Energy collision theory", by R.J. Glauber

Using hadron picture for Nuclear Interaction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Glau	ber moo	del					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} e^{i q_{L} z_{j}} \overbrace{\prod_{k \ (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j})\right]}^{(c)}$$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Glau	ber moo	lel					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} e^{i q_{L} z_{j}} \overbrace{\prod_{k \ (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j})\right]}^{(c)}$$

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Glau	ber moo	lel					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} e^{i q_{L} z_{j}} \prod_{k \ (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j}) \right]$$

(*a*)

• $\Gamma_N^{\gamma^* V}(\vec{b} - \vec{s_j})$ is the vector meson photo-production amplitude on a nucleon

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Glau	ber moc	lel					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} \underbrace{e^{i q_{L} z_{j}}}_{k (\neq j)} \overbrace{\prod_{k (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j})\right]}^{(c)}$$
(b)

۲

• Considering the quantities Longitudinal and transverse to the axis z of symmetry,

$$q_L = p_L^{\gamma^*} - p_L^V = rac{Q^2 + M_V^2}{2
u}$$

$$I_c = \frac{1}{q_L} = \frac{2\nu}{Q^2 + M_V^2}$$

• for $(z_{j1} - z_{j2}) < l_c$ contributions will add coherently

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Glau	ber moo	lel					

(b)

$$I_c=rac{1}{q_L}=rac{2
u}{Q^2+M_V^2}$$

• The γ^* interacts simultaneously with all the target nucleons within a distance ${\it I_c}$
Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Glau	ber moo	lel					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} e^{i q_{L} z_{j}} \overbrace{\prod_{k \ (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j})\right]}^{(c)}$$
(c)

• small scattering $(\vec{k} \sim \vec{k'})$ on the nuclei with $z_k > z_j$

•
$$ec{k}\simec{k'}\sim\parallel\hat{z}\Longrightarrow(ec{k}-ec{k'})\sim\perp\hat{z}$$

•
$$\Gamma(\vec{b}) = (e^{i\chi(\vec{b})} - 1)$$
 and
 $\chi_{tot}^{VV} = \sum_m \chi_m^{VV}(\vec{b} - \vec{s_m})$

$$e^{i\sum_m \chi_m^{VV}(\vec{b}-\vec{s_m})} = \prod_m (1-\Gamma_m^{VV}(\vec{b}-\vec{s_m}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

∜

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Glau	ber moo	lel					

$$\Gamma_{A}^{\gamma^{*}V}(\vec{b}) = \sum_{j=1}^{A} \overbrace{\Gamma_{N}^{\gamma^{*}V}(\vec{b} - \vec{s_{j}})}^{(a)} e^{i q_{L} z_{j}} \prod_{k \ (\neq j)}^{A} \left[1 - \Gamma_{N}^{VV}(\vec{b} - \vec{s_{k}}) \theta(z_{k} - z_{j}) \right]$$

• with this easy model (J.Hüfner et al., Phys. Lett. B383 (2996) 362) were able to parameterize the Q^2 and ν dependence of the Nuclear Transparency due to Coherence length effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup		
Claubar madal									

Glauber model

(c)

• with this easy model (J.Hüfner and oth., arXiv:nucl-th 9605007) were able to parameterize the Q^2 and ν dependence of the Nuclear Transparency due to Coherence length effect

・ロト ・聞ト ・ヨト ・ヨト

э

K. Ackerstaff, PRL 82, 3025 (1999) Exclusive ρ^0 electro-production, Coherence length (I_c) effect

•
$$I_c = \frac{2\nu}{M_V^2 + Q^2}$$

- Cross section dependence on *I_c*
- Mimics CT signal for incoherent ρ⁰ production

(日)、

э

K. Ackerstaff, PRL 82, 3025 (1999) Exclusive ρ^0 electro-production, Coherence length (l_c) effect

•
$$I_c = \frac{2\nu}{M_V^2 + Q^2}$$

- Cross section dependence on *l_c*
- Mimics CT signal for incoherent ρ⁰ production:
- Inter-nuclear spacing

・ロト ・四ト ・ヨト ・ヨ

K. Ackerstaff, PRL 82, 3025 (1999)

Exclusive ρ^0 electro-production, Coherence length (I_c) effect

- $I_c = \frac{2\nu}{M_V^2 + Q^2}$
- Cross section dependence on *l_c*
- Mimics CT signal for incoherent ρ^0 production
- Inter-nuclear spacing $(< r^2 >^{1/2} \sim 0.8 fm)$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

HERA positron storage ring at DESY: HERMES

K. Ackerstaff, PRL 82, 3025 (1999) Exclusive ρ^0 electro-production, Coherence length (l_c) effect

•
$$I_c = \frac{2\nu}{M_V^2 + Q^2}$$

- Cross section dependence on *l_c*
- Mimics CT signal for incoherent ρ^0 production
- Inter-nuclear spacing $(< r^2 >^{1/2} \sim 0.8 fm)$
- 2 Atom size

HERA positron storage ring at DESY: HERMES

K. Ackerstaff, PRL 82, 3025 (1999)

Exclusive ρ^0 electro-production, Coherence length (I_c) effect

- $I_c = \frac{2\nu}{M_V^2 + Q^2}$
- Cross section dependence on *l_c*
- Mimics CT signal for incoherent ρ^0 production
- Inter-nuclear spacing $(< r^2 >^{1/2} \sim 0.8 fm)$
- 2 Atom size

・ロト ・ 日 ト ・ 日 ト ・ 日 ・ クタマー

EG2 and HERMES kinematical range

HERMES experiment kinematical range:

・ロト ・聞ト ・ヨト ・ヨト

æ

- $0.8 GeV^2 < Q^2 < 4.5 GeV^2$
- $5 GeV < \nu < 24 GeV$

EG2 experiment kinematical range:

• $0.9 GeV^2 < Q^2 < 2 GeV^2$

•
$$2.2 GeV < \nu < 3.5 GeV$$

(日)、

э.

EG2 and HERMES kinematical range

EG2 experiment kinematical range:

・ロト ・聞ト ・ヨト ・ヨト

æ

- $0.9 GeV^2 < Q^2 < 2 GeV^2$
- $2.2 GeV < \nu < 3.5 GeV$

(日) (同) (日) (日)

э

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Outline	Background O	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

Momentum

Each quark, connected to another one by hard gluon exchange carrying momentum of order Q should be found within a distance of the order of $\frac{1}{Q}$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Point	t like co	nfiguration					

What is it?

High Q^2 in the reaction will select a very special configuration of the hadron wave function, where all connected quarks are close together, forming a small size color neutral configuration.

Momentum

Each quark, connected to another one by hard gluon exchange carrying momentum of order Q should be found within a distance of the order of $\frac{1}{Q}$

Color Transparency

Such an object is unable to emit or absorb soft gluons \Rightarrow its interaction with the other nucleons is significantly reduced

The distribution amplitude is (Lepage and Brodsky, PRD 22, 2157)

$$\phi(Q^2,x)=\int_0^{Q^2} d^2 k_T \psi(k_T,x)$$
 ; $(x= ext{Longitudinal momentum fraction})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The distribution amplitude is (Lepage and Brodsky, PRD 22, 2157)

$$\phi(Q^2, x) = \int_0^{Q^2} d^2 k_T \psi(k_T, x)$$
; (x = Longitudinal momentum fraction)

• if we expand this expression in Fourier series

$$\phi(Q^2,x) = \int_0^{Q^2} d^2 k_T \int d^2 b_T e^{i\vec{b_T}\cdot\vec{k_T}} \tilde{\psi}(b_T,x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The distribution amplitude is (Lepage and Brodsky, PRD 22, 2157)

$$\phi(Q^2, x) = \int_0^{Q^2} d^2 k_T \psi(k_T, x)$$
; (x = Longitudinal momentum fraction)

• if we expand this expression in Fourier series

$$\phi(Q^2,x) = \int_0^{Q^2} d^2 k_T \int d^2 b_T e^{i\vec{b_T}\cdot\vec{k_T}} \tilde{\psi}(b_T,x)$$

• and assume cylindrical symmetry around k_T

$$\phi(Q^2,x) = (2\pi)^2 \int_0^\infty db \, Q \, J_1(Qb) \tilde{\psi}(b_T,x)$$

•
$$\phi(Q^2, x) = (2\pi)^2 \int_0^\infty db \, Q \, J_1(Qb) \tilde{\psi}(b_T, x)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $\phi(Q^2, x) = (2\pi)^2 \int_0^\infty db \, Q \, J_1(Qb) \tilde{\psi}(b_T, x)$

 At high Q² the distribution amplitude tends to evaluate the wave function at points of small transverse space separation (b_T)

• $\phi(Q^2, x) = (2\pi)^2 \int_0^\infty db \, Q \, J_1(Qb) \tilde{\psi}(b_T, x)$

- At high Q² the distribution amplitude tends to evaluate the wave function at points of small transverse space separation (b_T)
 - Short distance is a statement about a dominant integration region

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $\phi(Q^2, x) = (2\pi)^2 \int_0^\infty db \, Q \, J_1(Qb) \tilde{\psi}(b_T, x)$

- At high Q² the distribution amplitude tends to evaluate the wave function at points of small transverse space separation (b_T)
- Short distance is a statement about a dominant integration region
- Each quark, connected to another one by hard gluon exchange carrying momentum of order Q should be found within a distance O(¹/_Ω)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

See P. Jain et al. , Physics Report 271 (1996) 93

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 $V(x_1 - x_2)V(x_1 - x_2) - V(x_1 - x_2)V(x_1' - x_2) + V(x_1' - x_2)V(x_1' - x_2) - V(x_1' - x_2)V(x_1 - x_2)V(x$

$$K(x_i, x_j') \propto [V(x_1' - x_2) - V(x_1 - x_2)]^2$$

• for
$$(b_T = |x'_1 - x_1| \Rightarrow 0)$$
, I have $f(x'_1) - f(x_1) \sim |x'_1 - x_1| \frac{df}{dx_1}$
• $K(x_i, x'_j) \sim \{b_T \cdot \nabla [V(x_1 - x_2)]\}^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$K(x_i, x_j') \propto [V(x_1' - x_2) - V(x_1 - x_2)]^2$$

• for
$$(b_T = |x_1' - x_1| \Rightarrow 0)$$
, I have $f(x_1') - f(x_1) \sim |x_1' - x_1| \frac{df}{dx_1}$

•
$$K(x_i, x'_j) \sim \{b_T \cdot \nabla [V(x_1 - x_2)]\}^2$$

$$\Downarrow$$

$$K(x_i,x_j') \propto (b_T)^2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

At the time of the reaction, the hadron has to fluctuate to a Point Like configuration

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

(1)

At the time of the reaction, the hadron has to fluctuate to a Point Like configuration

(1)

(2)

This configuration will experience a reduced interaction in the nucleus

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

At the time of the reaction, the hadron has to fluctuate to a Point Like configuration

This configuration will experience a reduced interaction in the nucleus

(3)

(2)

(1)

A signature of Color Transparency will be an increase in nuclear transparency T_A with an increase in the hardness of the reaction, driven by Q^2

Lengths in the reaction, order of magnitude

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Lengths in the reaction, order of magnitude

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Kine	matical	cuts					

• W > 2GeV, to avoid the resonance region

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Kine	matical	cuts					

After w cut

• W > 2 GeV, to avoid the resonance region

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

After w cut

- W > 2GeV, to avoid the resonance region
- -t > 0.1GeV² to exclude coherent production off the nucleus
- $-t < 0.4 GeV^2$ to be in the diffractive region

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで
Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Kine	matical	cuts					

After w and t cuts

- W > 2 GeV, to avoid the resonance region
- -t > 0.1 GeV² to exclude coherent production off the nucleus
- -t < 0.4GeV² to be in the diffractive region

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

After w and t cuts

- W > 2GeV, to avoid the resonance region
- -t > 0.1GeV² to exclude coherent production off the nucleus
- $-t < 0.4 GeV^2$ to be in the diffractive region
- $z = \frac{E_{\rho}}{\nu} > 0.9$ to select the elastic process

After w, t and z cuts

- W > 2GeV, to avoid the resonance region
- -t > 0.1GeV² to exclude coherent production off the nucleus
- $-t < 0.4 GeV^2$ to be in the diffractive region
- $z = \frac{E_{\rho}}{\nu} > 0.9$ to select the elastic process

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

-t dependence show the rapid fall expected for incoherent diffractive ρ^0 production, consistent with CLAS data: (2.63 \pm 0.44) Morrow JLAB-PHY-08-831, arXiv:0807.3834

Background Study and Simulation

- As event generator used the one implemented by B. Mustapha (ANL)
- Tune to the Eg2 experiment configurations
- Radiative Effects, Fermi motion of target
- Possibility of using experimental cross section (D.Cassel, Physical Review D, 24 (1981)) for tuning the different contributions in our kinematics
- Background assumed composition:

$$\begin{array}{cccc} \bullet & \gamma^{*} + p \Longrightarrow \Delta^{++} + \pi^{-} \\ \bullet & \gamma^{*} + p \Longrightarrow \Delta^{0} + \pi^{+} \\ \bullet & \gamma^{*} + p \Longrightarrow p + \pi^{+} + \pi^{-} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Acce	ptance o	correction					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

In CLAS comprehensive of:

- \bullet Acceptance: Geometry of CLAS is not 4π
- Efficiency: considering together:
 - Detectors
 - 2 Reconstruction protocol
 - Analysis

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
Acce	ptance o	correction					

- Unexpectedly large effect of acceptance
- Due to:
 - tight kinematic cuts,
 - 2 complicated detector
 - 3 targets not at identical location (5 cm from each other)

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2	Results	Conclusions	Backup
Acce	ptance of	correction					

Iron at 4GeV

- Determined the correction with 2 methods
 - green: bin to bin

(日)、

э

- 2 red: bin to migration
- 3 consider as systematic

error

• The goal of the experiment is to determine the Nuclear Transparency $T^{\rho^0}_A$ as a function of Q^2 and I_c

$$T_A^{\rho^0} = \frac{\left(\frac{N_A^{\rho^0}}{L_A^{int}}\right)}{\left(\frac{N_D^{\rho^0}}{L_D^{int}}\right)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The goal of the experiment is to determine the Nuclear Transparency $T^{\rho^0}_A$ as a function of Q^2 and I_c

$$T_A^{\rho^0} = \frac{\left(\frac{N_A^{\rho^0}}{L_A^{int}}\right)}{\left(\frac{N_D^{\rho^0}}{L_D^{int}}\right)}$$

• where L_A^{int} is the integrated luminosity for the target A

$$L_A^{int} = n_A^{nucleons} rac{Q_{int}}{q_e}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• L. Frankfurt, G.A. Miller, M. Strikman, arXiv: 0803.4012v2 [nucl-th]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Glauber based calculation.
- Includes experimental conditions.
- Includes the ρ^0 decay.
- With of without the Color Transparency effect.

$$\frac{d\sigma}{dt} = \sum_{n=0}^{\infty} \frac{d\sigma_n}{dt} \implies T_A = \frac{\frac{d\sigma}{dt}}{A\frac{d\sigma^{\gamma*V}}{dt}} = \sum_{n=0}^{\infty} \frac{\frac{d\sigma_n}{dt}}{A\frac{d\sigma^{\gamma*V}}{dt}} = \sum_{n=0}^{\infty} T_n$$

• The full cross section will be given by the sum of all the possible different number of elastic re-scattering (*n* in equation)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

L. Frankfurt, G.A. Miller, M. Strikman Model

$$\frac{d\sigma}{dt} = \sum_{n=0}^{\infty} \frac{d\sigma_n}{dt} \implies T_A = \frac{\frac{d\sigma}{dt}}{A^{\frac{d\sigma\gamma^*V}{dt}}} = \sum_{n=0}^{\infty} \frac{\frac{d\sigma_n}{dt}}{A^{\frac{d\sigma\gamma^*V}{dt}}} = \sum_{n=0}^{\infty} T_n$$

$$\underbrace{\xrightarrow{(a)}}_{d\sigma_0} = A \underbrace{\frac{d\sigma^{\gamma^*V}}{dt} \int d^2b \int_{-\infty}^{\infty} dz \,\rho(b,z)}_{-\infty} \underbrace{(1 - \int_z^{\infty} dz' \sigma_{tot} \rho(b,z'))^{A-1}}_{(A-1)}$$

- (a) represents the sum of all the possible contributions for scattering a Vector meson from a γ^{*} in a target with density given by ρ(b, z')
- (b) refers to the probability of not having an elastic re-scattering $(1 \int_{z}^{\infty} dz' \sigma_{tot} \rho(b, z'))$ from all the remaining nucleons (A 1) starting from the point z of the vector meson's creation

L. Frankfurt, G.A. Miller, M. Strikman Model

$$\begin{split} \frac{d\sigma}{dt} &= \sum_{n=0}^{\infty} \frac{d\sigma_n}{dt} \implies T_A = \frac{\frac{d\sigma}{dt}}{A \frac{d\sigma\gamma^* V}{dt}} = \sum_{n=0}^{\infty} \frac{\frac{d\sigma_n}{dt}}{A \frac{d\sigma\gamma^* V}{dt}} = \sum_{n=0}^{\infty} T_n \\ \frac{d\sigma_0}{dt} &= A \frac{d\sigma\gamma^* V}{dt} \int d^2 b \int_{-\infty}^{\infty} dz \, \rho(b, z) (1 - \int_z^{\infty} dz' \sigma_{tot} \rho(b, z'))^{A-1} \\ \sigma_{eff}^D (z' - z, p_{\rho^0}) &= \sigma_{tot}(p_{\rho^0}) \left[\left(\frac{n^2 < k_T^2 >}{Q^2} + \frac{z}{l_h} (1 - \frac{n^2 < k_T^2 >}{Q^2}) \right) \theta(l_h - (z' - z)) \right] \\ &+ \sigma_{tot}(p_{\rho^0}) \left[\theta((z' - z) - l_h) \exp\left(- \frac{\Gamma_{\rho^0}}{\gamma_{\rho_{\rho^0}}} (z' - z) \right) \right] \\ &+ 2\sigma_{\pi N} (\frac{p_{\rho^0}}{2}) \left[\theta((z' - z) - l_h) \left(1 - \exp\left(- \frac{\Gamma_{\rho^0}}{\gamma_{\rho_{\rho^0}}} (z' - z) \right) \right) \right]. \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\begin{split} \sigma_{eff}^{D}(z'-z,p_{\rho^{0}}) = &\sigma_{tot}(p_{\rho^{0}}) \left[\left(\frac{n^{2} < k_{T}^{2} >}{Q^{2}} + \frac{z}{l_{h}} (1 - \frac{n^{2} < k_{T}^{2} >}{Q^{2}}) \right) \theta(l_{h} - (z'-z)) \right] \\ &+ \sigma_{tot}(p_{\rho^{0}}) \left[\theta((z'-z) - l_{h}) \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right] \\ &+ 2\sigma_{\pi N} (\frac{p_{\rho^{0}}}{2}) \left[\theta((z'-z) - l_{h}) \left(1 - \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right) \right]. \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

• Point Like Configuration interaction

$$\begin{aligned} \sigma_{eff}^{D}(z'-z,p_{\rho^{0}}) = &\sigma_{tot}(p_{\rho^{0}}) \left[\left(\frac{n^{2} < k_{T}^{2} >}{Q^{2}} + \frac{z}{l_{h}} (1 - \frac{n^{2} < k_{T}^{2} >}{Q^{2}}) \right) \theta(l_{h} - (z'-z)) \right] \\ &+ \sigma_{tot}(p_{\rho^{0}}) \left[\theta((z'-z) - l_{h}) \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right] \\ &+ 2\sigma_{\pi N} (\frac{p_{\rho^{0}}}{2}) \left[\theta((z'-z) - l_{h}) \left(1 - \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right) \right]. \end{aligned}$$

- PLC evolution in $\theta(l_h (z' z))$
- $I_h = 2p_{\rho^0}/\Delta M^2$ is the formation time

э

$$\sigma_{eff}^{D}(z'-z,p_{\rho^{0}}) = \sigma_{tot}(p_{\rho^{0}}) \left[\left(\frac{n^{2} < k_{T}^{2} >}{Q^{2}} + \frac{z}{l_{h}} (1 - \frac{n^{2} < k_{T}^{2} >}{Q^{2}}) \right) \theta(l_{h} - (z'-z)) \right] \\ + \sigma_{tot}(p_{\rho^{0}}) \left[\theta((z'-z) - l_{h}) \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{\rho_{\rho^{0}}}}(z'-z)\right) \right] \\ + 2\sigma_{\pi N}(\frac{p_{\rho^{0}}}{2}) \left[\theta((z'-z) - l_{h}) \left(1 - \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{\rho_{\rho^{0}}}}(z'-z)\right) \right) \right].$$

- PLC evolution in $\theta(l_h (z' z))$
- $I_h = 2p_{\rho^0}/\Delta M^2$ is the formation time

$$\begin{split} \sigma_{eff}^{D}(z'-z,p_{\rho^{0}}) = &\sigma_{tot}(p_{\rho^{0}}) \left[\left(\frac{n^{2} < k_{T}^{2} >}{Q^{2}} + \frac{z}{l_{h}} (1 - \frac{n^{2} < k_{T}^{2} >}{Q^{2}}) \right) \theta(l_{h} - (z'-z)) \right] \\ &+ \sigma_{tot}(p_{\rho^{0}}) \left[\theta((z'-z) - l_{h}) \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right] \\ &+ 2\sigma_{\pi N} (\frac{p_{\rho^{0}}}{2}) \left[\theta((z'-z) - l_{h}) \left(1 - \exp\left(-\frac{\Gamma_{\rho^{0}}}{\gamma_{p_{\rho^{0}}}} (z'-z) \right) \right) \right]. \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- Vector meson interaction + decay
- Interaction of decay product

Outline	Background O	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
GKN	l Model						

- Gallmeister, Kaskulov, Mosel . *PRC* **83**, 015201 (2011)
- Coupled channel Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport equation.
- Includes rho decay and subsequent pion absorption.
- Includes experimental cuts and acceptance.
- With and without CT effects.

(日)、

Outline	Background 0	Theoretical introduction	Experiments	CLAS EG2 000	Results	Conclusions	Backup
KNS	Model						

Kopeliovich, Nemchik, Schafer, Tarasov PRC 65 (2002) 035201

- Light Cone QCD Formalism for q q-bar dipole.
- $\Im \sigma(qq)$ Universal dipole cross section for q q-bar interaction with a nucleon, fit to proton structure functions over a large range of x, Q².
- ⊌LC wave function for q q-bar fluctuation of photon.
- LC wave function for vector meson.
- Parameter free (apart from initial fit).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Using the same ingredients the FSM (LSM) model agrees well with both data sets.

FMS: Frankfurt, Miller and Strikman, PRC 78: 015208, 2008 LSM: Larson, Miller and Strikman, PRC 74, 018201 (2006)