Helicity Asymmetry Measurement for π^0 Photoproduction on the CLAS Frozen Spin Target # Diane Schott, William Briscoe, Igor Strakovsky The George Washington University ### For CLAS Collaboration - Single Pion photoproduction. - Experimental Facilities at JLab Hall B. - CLAS. - Photon Tagger. - Circular polarized beam. - Linearly polarized beam. - FROST. - The Experiment. - Double Polarized measurements for $\gamma p \rightarrow \pi^0 p$. - Summary. # Single Pion Pholo Production ### Status of Non-strange Resonances: PDG14 5 * 9/15/2015 ### Baryon Resonance Spectrum • Most models predict more resonance states than observed. R.G. Edwards et al. Phys Rev D 84, 074508 (2011) ### Baryon Resonances - The three light quarks can arranged in 6 baryonic families \mathbb{N}^* , Δ^* , Λ^* , Σ^* , Ξ^* , and Ω^* . - The number of family members that can exist is not arbitrary. - Rather, the following proportionally is expected when the SU(3)_F symmetry of QCD is the controlling symmetry: **2** N*, **1** $$\Delta$$ *, **3** Δ *, **3** Σ *, **3** Ξ *, and **1** Ω * - The number of experimentally identified resonances of each baryon family is 26 N*, 22 Δ * and so on. - Constituent quark models predict the existence of no less than 64 N* and 22 Δ * states with mass < 3 GeV². - The seriousness of the "missing-states" problem is obvious from these numbers. - Recently, the **hypothesis** of a very **small** πN coupling of missing states should await the results of more realistic, coupled-channel calculations. Ben Nefkens, π N Newsletter, **14**, 150 (1997) ### Isospin Combinations for Reactions involving π^0 and π^+ - Differing isospin for N* and Δ^+ for $\pi^0 p$ and $\pi^+ n$ states. - The π^0 p and π^+ n final states can help distinguish between the Δ^+ and N*. $$\frac{\Delta^{+}}{1} \qquad \qquad \downarrow \\ \pi^{0} + p : \sqrt{2/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle - \sqrt{1/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$ $$\pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$ # JSab Kall B Experimental Facilities # Hall B Photon Tagger ### JLab Hall B **Bremsstrahlung** #### **Photon Tagger had:** - $E_{v} = (0.20-0.95) \times E_{0}$ - E_γ up to ~5.8 GeV - ∆E/E ~ 10-3 x E₀ - Circular polarized photons with longitudinally polarized electrons. - Oriented diamond crystal for linearly polarized photons. • Tagger was built by the GW, CUA, and ASU nuclear physics groups. Hadron 2015, Newport News, VA, Sept 2015 D. Sober et al. Nucl Instrum Meth A 440, 263 (2000) ### Circular Photon Beam Polarization - Circular polarized photons with longitudinally polarized electrons. - CEBAF electron beam polarization >85%. - Tagged flux \sim 50 100 MHz for k > 0.5 E₀ 1.0 H. Olsen and L.C. Maximon, Phys Rev 114, 887 (1959) 0.3 0.3 0.4 0.5 k/E_o 0.8 ### Linearly Polarized Photons simulated coherent brem. spectrum - Linearly polarized photons: coherent bremsstrahlung on oriented diamond crystal (50 μm). - Two linear polarized states (parallel & perpendicular). - Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Ken Livingston/Glasgow U.) - Perpendicular 1.3 GeV edge shown. ### FroST Target ### The FroST target and its components: A: Primary heat exchanger B: 1 K heat shield C: Holding coil D: 20 K heat shield E: Outer vacuum can (Rohacell extension) F: CH2 target G: Carbon target H: Butanol target J: Target insert K: Mixing chamber L: Microwave waveguide M: Kapton coldseal #### Performance Specs: Base Temp: 28 mK w/o beam, 30 mK with Cooling Power: 800 µW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK Polarization: +82%, -90% 1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol) Roughly 1% polarization loss per day. 3 weeks one of the control c Igor Strakovsky # The Experiment ### Battle Plan for Observables | Beam | | Target | | | Recoil | | | Target + Recoil | | | | | | | | | |---------------------------------------|-------------|------------------|----|------------------|------------|------------|----------|-----------------|-------------------|---------|-------------------|---------------|------------|-----------|----------|------------| | | | | | | <i>x</i> ' | <i>y</i> ' | z' | x' | x' | x' | <i>y</i> ' | <i>y</i> ' | <i>y</i> ' | z' | z' | <i>z</i> ' | | | | x | у | z | | | | x | у | z | x | у | z | x | у | z | | unpolarized | $d\sigma_0$ | | T | | | P | | T_x , | | L_x , | | Σ | | T_z , | | L_z , | | $P_L^{\gamma}\sin(2\varphi_{\gamma})$ | 1 | H | , | \boldsymbol{G} | $O_{x'}$ | | $O_{z'}$ | | C_z , | | $\left(E\right)$ | | F | | $-C_x$ | | | $P_L^{\gamma}\cos(2\varphi_{\gamma})$ | Σ | | -P | | | -T | | $-L_x$, | | T_z , | | - $d\sigma_0$ | | L_{x} , | | $-T_x$ | | circular P_c^{γ} | $d\sigma_0$ | \boldsymbol{F} | | (-E) | C_x , | | C_z , | | -O _z , | | G | | -H | | $O_{x'}$ | | Lorenzo Zana (6D2) ### **FroST** | | , | | | | | | | |----------------------|---|--------|------|--------------------|---|--|--| | Photon beam | | Target | | two diffe | | | | | | X | У | Z | | They are
There ar | | | | Unpolarized | 0 | Т | 0 | | Fierz ide | | | | Linearly polarized | Н | (-P) | -G | | | | | | Circularly polarized | F | 0 | (-E) | | N | | | | | g | 9b | g9a | Nov '07 to Feb '08 | | | | - Every observable can be measured in at least **two** different experiments. - They are not all independent. There are relations between them known as Fierz identities. # The Experiment $$W = 1325 - 2075 \text{ MeV}$$ $\Delta W = 50 \text{ MeV}$ $\cos \theta = -0.8 - +0.8$ $n_{\cos \theta} = 16$ Hadron 2015, Newport News, VA, Sept 2015 #### **Polarized cross section** $$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(1 - P_z P_{\odot} \mathbf{E}\right)$$ #### **Maximum likelihood estimator** $$\hat{E} = -\frac{1}{P_z P_{\odot}} \left(\frac{N_+^p - N_-^p}{N_+^p + N_-^p} \right)$$ **Courtesy of Steffen Strauch** ### Yields **Denominator** - Gaussian + polynomial to fit **peak**, yield is (2σ) - W = 1475 MeV. $$E = -\frac{1}{P_Z^T P_C^{\gamma}} \left(\begin{array}{c} N_+ - N_- \\ N_+ + N_- \end{array} \right)$$ ### Numerator # Polarized Measurements for $\gamma p \rightarrow \pi^{\dagger} n \in \text{for } \gamma p \rightarrow \pi^{\prime} p$ ### Double Polarization Observable **E** for π^+ n $$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(1 - P_z P_{\odot} \mathbf{E}\right)$$ $$W = 1240 - 2260 \text{ MeV}$$ $-0.9 \le \cos(\theta_{\pi}^{cm}) \le +0.9$ **Courtesy of Steffen Strauch, CIPANP 2015** ### Legendre Polynomial Fit - Beyond the SAID PWA, we plan the Legendre analysis for CLAS E measurements for both $vp \rightarrow \pi^+ p$ and $\gamma p \rightarrow \pi^0 p$ as we did recently for the CLAS Σ data M. Dugger et al. (CLAS) Phys Rev C 88, 065203 (2013). - Unfortunately, recent CBELSA E for $\gamma p \rightarrow \pi^0 p$ is insufficient for that because of so broad energy binning ($\Delta W = 300 - 500 \text{ MeV}$). - S. Strauch et al. (CLAS) Phys Lett B 750, 53 (2015) - M. Gottschall et al. (CBELSA/TAPS) Phys Rev Lett 112, 012003 (2014) # ${\mathcal I}$ # Double Polarization Observable **E** for $\pi^0 p$ • Predictions are good for low energies while high energies are waiting for fit. 9/15/2015 ### Summary - Spin observables will tremendously aid in determining resonance parameters and finding "missing resonances" (if they exist). - Photon experiments in Hall B with FroST at JLab have acquired hundreds of data points unprecedented statistical quality and covering many reactions. - For most reaction channels, we will have data sufficient for a nearly complete experiments. - Evidence of new states found in coupled-channel analyses. - Data for some reactions and some observables are nearing the publication stage, but much work remains. - High level analysis tools (SAID, MAID, Juelich, BnGa) are in great demand. # Work in Progress igor@gwu.edu