Helicity Asymmetry Measurement for π^0 Photoproduction on the CLAS Frozen Spin Target

Diane Schott, William Briscoe, Igor Strakovsky The George Washington University

For CLAS Collaboration

- Single Pion photoproduction.
- Experimental Facilities at JLab Hall B.
 - CLAS.
 - Photon Tagger.
 - Circular polarized beam.
 - Linearly polarized beam.
 - FROST.
- The Experiment.
- Double Polarized measurements for $\gamma p \rightarrow \pi^0 p$.
- Summary.

Single Pion Pholo Production

Status of Non-strange Resonances: PDG14

5 *

9/15/2015

Baryon Resonance Spectrum

• Most models predict more resonance states than observed.

R.G. Edwards et al. Phys Rev D 84, 074508 (2011)

Baryon Resonances

- The three light quarks can arranged in 6 baryonic families \mathbb{N}^* , Δ^* , Λ^* , Σ^* , Ξ^* , and Ω^* .
- The number of family members that can exist is not arbitrary.
- Rather, the following proportionally is expected when the SU(3)_F symmetry of QCD is the controlling symmetry:

2 N*, **1**
$$\Delta$$
*, **3** Δ *, **3** Σ *, **3** Ξ *, and **1** Ω *

- The number of experimentally identified resonances of each baryon family is 26 N*, 22 Δ * and so on.
- Constituent quark models predict the existence of no less than 64 N* and 22 Δ * states with mass < 3 GeV².
- The seriousness of the "missing-states" problem is obvious from these numbers.
- Recently, the **hypothesis** of a very **small** πN coupling of missing states should await the results of more realistic, coupled-channel calculations.

Ben Nefkens, π N Newsletter, **14**, 150 (1997)

Isospin Combinations for Reactions involving π^0 and π^+

- Differing isospin for N* and Δ^+ for $\pi^0 p$ and $\pi^+ n$ states.
- The π^0 p and π^+ n final states can help distinguish between the Δ^+ and N*.

$$\frac{\Delta^{+}}{1} \qquad \qquad \downarrow \\ \pi^{0} + p : \sqrt{2/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle - \sqrt{1/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$

$$\pi^{+} + n : \sqrt{1/3} \left| I = \frac{3}{2}, I_{3} = \frac{1}{2} \right\rangle + \sqrt{2/3} \left| I = \frac{1}{2}, I_{3} = \frac{1}{2} \right\rangle$$

JSab Kall B Experimental Facilities

Hall B Photon Tagger

JLab Hall B

Bremsstrahlung

Photon Tagger had:

- $E_{v} = (0.20-0.95) \times E_{0}$
- E_γ up to ~5.8 GeV
- ∆E/E ~ 10-3 x E₀
- Circular polarized
 photons with
 longitudinally polarized
 electrons.
- Oriented diamond crystal for linearly polarized photons.

• Tagger was built by the GW, CUA, and ASU nuclear physics groups.

Hadron 2015, Newport News, VA, Sept 2015

D. Sober et al. Nucl Instrum Meth A 440, 263 (2000)

Circular Photon Beam Polarization

- Circular polarized photons with longitudinally polarized electrons.
- CEBAF electron beam polarization >85%.
- Tagged flux \sim 50 100 MHz for k > 0.5 E₀

1.0

H. Olsen and L.C. Maximon, Phys Rev 114, 887 (1959)

0.3

0.3

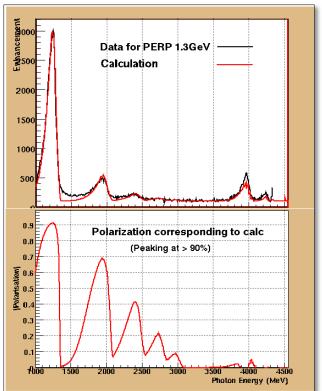
0.4

0.5

k/E_o

0.8

Linearly Polarized Photons



simulated coherent brem. spectrum

- Linearly polarized photons:
 coherent bremsstrahlung on
 oriented diamond crystal (50 μm).
- Two linear polarized states (parallel & perpendicular).
- Analytical QED coherent bremsstrahlung calculation fit to actual spectrum (Ken Livingston/Glasgow U.)
- Perpendicular 1.3 GeV edge shown.

FroST Target

The FroST target and its components:

A: Primary heat exchanger

B: 1 K heat shield

C: Holding coil

D: 20 K heat shield

E: Outer vacuum can (Rohacell extension)

F: CH2 target

G: Carbon target

H: Butanol target

J: Target insert

K: Mixing chamber

L: Microwave waveguide

M: Kapton coldseal

Performance Specs:

Base Temp: 28 mK w/o beam, 30 mK with

Cooling Power: 800 µW @ 50 mK, 10 mW @ 100 mK, and 60 mW @ 300 mK

Polarization: +82%, -90%

1/e Relaxation Time: 2800 hours (+Pol), 1600 hours (-Pol)

Roughly 1% polarization loss per day.

3 weeks

one of the control of the c

Igor Strakovsky

The Experiment

Battle Plan for Observables

Beam		Target			Recoil			Target + Recoil								
					<i>x</i> '	<i>y</i> '	z'	x'	x'	x'	<i>y</i> '	<i>y</i> '	<i>y</i> '	z'	z'	<i>z</i> '
		x	у	z				x	у	z	x	у	z	x	у	z
unpolarized	$d\sigma_0$		T			P		T_x ,		L_x ,		Σ		T_z ,		L_z ,
$P_L^{\gamma}\sin(2\varphi_{\gamma})$	1	H	,	\boldsymbol{G}	$O_{x'}$		$O_{z'}$		C_z ,		$\left(E\right)$		F		$-C_x$	
$P_L^{\gamma}\cos(2\varphi_{\gamma})$	Σ		-P			-T		$-L_x$,		T_z ,		- $d\sigma_0$		L_{x} ,		$-T_x$
circular P_c^{γ}	$d\sigma_0$	\boldsymbol{F}		(-E)	C_x ,		C_z ,		-O _z ,		G		-H		$O_{x'}$	

Lorenzo Zana (6D2)

FroST

	,						
Photon beam		Target		two diffe			
	X	У	Z		They are There ar		
Unpolarized	0	Т	0		Fierz ide		
Linearly polarized	Н	(-P)	-G				
Circularly polarized	F	0	(-E)		N		
	g	9b	g9a	Nov '07 to Feb '08			

- Every observable can be measured in at least **two** different experiments.
- They are not all independent. There are relations between them known as Fierz identities.

The Experiment

$$W = 1325 - 2075 \text{ MeV}$$
 $\Delta W = 50 \text{ MeV}$ $\cos \theta = -0.8 - +0.8$ $n_{\cos \theta} = 16$

Hadron 2015, Newport News, VA, Sept 2015

Polarized cross section

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(1 - P_z P_{\odot} \mathbf{E}\right)$$

Maximum likelihood estimator

$$\hat{E} = -\frac{1}{P_z P_{\odot}} \left(\frac{N_+^p - N_-^p}{N_+^p + N_-^p} \right)$$

Courtesy of Steffen Strauch

Yields

Denominator

- Gaussian + polynomial to fit **peak**, yield is (2σ)
- W = 1475 MeV.

$$E = -\frac{1}{P_Z^T P_C^{\gamma}} \left(\begin{array}{c} N_+ - N_- \\ N_+ + N_- \end{array} \right)$$

Numerator

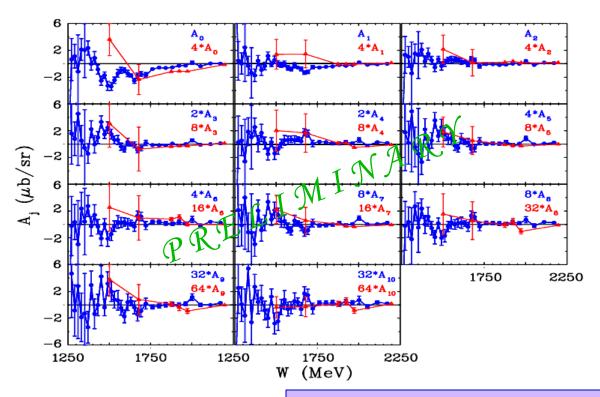
Polarized Measurements for $\gamma p \rightarrow \pi^{\dagger} n \in \text{for } \gamma p \rightarrow \pi^{\prime} p$

Double Polarization Observable **E** for π^+ n

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_0 \left(1 - P_z P_{\odot} \mathbf{E}\right)$$

$$W = 1240 - 2260 \text{ MeV}$$

 $-0.9 \le \cos(\theta_{\pi}^{cm}) \le +0.9$



Courtesy of Steffen Strauch, CIPANP 2015

Legendre Polynomial Fit

- Beyond the SAID PWA, we plan the Legendre analysis for CLAS E measurements for both $vp \rightarrow \pi^+ p$ and $\gamma p \rightarrow \pi^0 p$ as we did recently for the CLAS Σ data M. Dugger et al. (CLAS) Phys Rev C 88, 065203 (2013).
- Unfortunately, recent CBELSA E for $\gamma p \rightarrow \pi^0 p$ is insufficient for that because of so broad energy binning ($\Delta W = 300 - 500 \text{ MeV}$).

- S. Strauch et al. (CLAS) Phys Lett B 750, 53 (2015)
- M. Gottschall et al. (CBELSA/TAPS) Phys Rev Lett 112, 012003 (2014)

${\mathcal I}$

Double Polarization Observable **E** for $\pi^0 p$

• Predictions are good for low energies while high energies are waiting for fit.

9/15/2015

Summary

- Spin observables will tremendously aid in determining resonance parameters and finding "missing resonances" (if they exist).
- Photon experiments in Hall B with FroST at JLab have acquired hundreds of data points unprecedented statistical quality and covering many reactions.
- For most reaction channels, we will have data sufficient for a nearly complete experiments.
- Evidence of new states found in coupled-channel analyses.
- Data for some reactions and some observables are nearing the publication stage, but much work remains.
- High level analysis tools (SAID, MAID, Juelich, BnGa) are in great demand.

Work in Progress

igor@gwu.edu