Photo-production of ω using CLAS at Jefferson Laboratory

ZULKAIDA AKBAR
(CLAS Collaboration)

APS April Meeting 2017
01/30/2017
Outline

• Background and Motivation
• CLAS Detector at JLAB
• CLAS-g12 and CLAS-FROST Experiment
• Data Analysis
• Preliminary Result and Discussion
• Summary
Background & Motivation

- The Principle Questions
- Baryon Resonances Spectrum
- Partial Wave Analysis (PWA)
- The Need of ω Photo-production
- Previous Study and Measurements
The principle questions

• The families of the fundamental Particles: Quark, Lepton, Gauge Boson.

• QCD governs the Strong interaction among quarks.

• Quarks/Antiquarks always form composite object called Hadrons.

Principle questions:

• How does the behaviors of quarks determine the properties of hadrons?

• How does the interactions among quarks give rise to the spectrum of hadrons?

• What are the fundamental degrees of freedom inside hadrons?
Baryon Resonances Spectrum

Some models:

Constituent Quark Model (CQM)
- Missing Baryon resonances from CQM (See Y16.0001: Recent progress in understanding the baryon resonances spectrum)
- The discovery of N(1900)3/2+ ruled out the static quark-diquark model.
- Mapping out the whole resonances spectrum is very important to test the models.

Hybrid Baryons

<table>
<thead>
<tr>
<th>J'</th>
<th>M_{CQM}</th>
<th>M_{PDG}</th>
<th>Rating</th>
<th>J'</th>
<th>M_{CQM}</th>
<th>M_{PDG}</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-</td>
<td>1460</td>
<td>1535</td>
<td>****</td>
<td>1/2+</td>
<td>1540</td>
<td>1440</td>
<td>****</td>
</tr>
<tr>
<td>1/2-</td>
<td>1535</td>
<td>1650</td>
<td>****</td>
<td>1/2+</td>
<td>1770</td>
<td>1710</td>
<td>***</td>
</tr>
<tr>
<td>1/2-</td>
<td>1945</td>
<td>1895</td>
<td>**</td>
<td>1/2+</td>
<td>1880</td>
<td>1880</td>
<td>**</td>
</tr>
<tr>
<td>1/2-</td>
<td>2030</td>
<td>1975</td>
<td>**</td>
<td>1/2+</td>
<td>1975</td>
<td>2065</td>
<td>2100</td>
</tr>
<tr>
<td>1/2-</td>
<td>2070</td>
<td>2145</td>
<td>**</td>
<td>1/2+</td>
<td>2210</td>
<td>2210</td>
<td>*</td>
</tr>
<tr>
<td>3/2-</td>
<td>1495</td>
<td>1520</td>
<td>****</td>
<td>3/2+</td>
<td>1795</td>
<td>1720</td>
<td>****</td>
</tr>
<tr>
<td>3/2-</td>
<td>1625</td>
<td>1700</td>
<td>**</td>
<td>3/2+</td>
<td>1870</td>
<td>1900</td>
<td>***</td>
</tr>
<tr>
<td>3/2-</td>
<td>1960</td>
<td>1875</td>
<td>**</td>
<td>3/2+</td>
<td>1910</td>
<td>1950</td>
<td>***</td>
</tr>
<tr>
<td>3/2-</td>
<td>2055</td>
<td>2120</td>
<td>**</td>
<td>3/2+</td>
<td>2030</td>
<td>2040</td>
<td>*</td>
</tr>
<tr>
<td>5/2-</td>
<td>1630</td>
<td>1675</td>
<td>****</td>
<td>5/2+</td>
<td>1770</td>
<td>1680</td>
<td>****</td>
</tr>
<tr>
<td>5/2-</td>
<td>2080</td>
<td>2060</td>
<td>**</td>
<td>5/2+</td>
<td>1860</td>
<td>2000</td>
<td>**</td>
</tr>
<tr>
<td>5/2-</td>
<td>2095</td>
<td>2180</td>
<td>**</td>
<td>5/2+</td>
<td>1980</td>
<td>2000</td>
<td>**</td>
</tr>
<tr>
<td>5/2-</td>
<td>2235</td>
<td>2280</td>
<td>**</td>
<td>5/2+</td>
<td>1995</td>
<td>2000</td>
<td>**</td>
</tr>
<tr>
<td>5/2-</td>
<td>2260</td>
<td>2295</td>
<td>**</td>
<td>5/2+</td>
<td>2235</td>
<td>2280</td>
<td>**</td>
</tr>
<tr>
<td>5/2-</td>
<td>2270</td>
<td>2305</td>
<td>**</td>
<td>5/2+</td>
<td>2260</td>
<td>2295</td>
<td>**</td>
</tr>
<tr>
<td>7/2-</td>
<td>2190</td>
<td>2000</td>
<td>****</td>
<td>7/2+</td>
<td>2345</td>
<td>2220</td>
<td>****</td>
</tr>
<tr>
<td>7/2-</td>
<td>2205</td>
<td>2390</td>
<td>**</td>
<td>7/2+</td>
<td>2345</td>
<td>2220</td>
<td>****</td>
</tr>
<tr>
<td>7/2-</td>
<td>2255</td>
<td>2410</td>
<td>**</td>
<td>7/2+</td>
<td>2345</td>
<td>2220</td>
<td>****</td>
</tr>
<tr>
<td>7/2-</td>
<td>2305</td>
<td>2455</td>
<td>**</td>
<td>7/2+</td>
<td>2345</td>
<td>2220</td>
<td>****</td>
</tr>
<tr>
<td>7/2-</td>
<td>2355</td>
<td>2455</td>
<td>**</td>
<td>7/2+</td>
<td>2345</td>
<td>2220</td>
<td>****</td>
</tr>
<tr>
<td>9/2-</td>
<td>2250</td>
<td>2345</td>
<td>****</td>
<td>9/2+</td>
<td>2220</td>
<td>2200</td>
<td>****</td>
</tr>
<tr>
<td>11/2</td>
<td>2600</td>
<td>2600</td>
<td>**</td>
<td>11/2</td>
<td>2600</td>
<td>2600</td>
<td>**</td>
</tr>
<tr>
<td>11/2</td>
<td>2670</td>
<td>2670</td>
<td>**</td>
<td>11/2</td>
<td>2670</td>
<td>2670</td>
<td>**</td>
</tr>
<tr>
<td>11/2</td>
<td>2700</td>
<td>2700</td>
<td>**</td>
<td>11/2</td>
<td>2700</td>
<td>2700</td>
<td>**</td>
</tr>
<tr>
<td>13/2</td>
<td>2715</td>
<td>2715</td>
<td>**</td>
<td>13/2</td>
<td>2715</td>
<td>2715</td>
<td>**</td>
</tr>
</tbody>
</table>
Partial Wave Analysis (PWA)

- The overlapping nature among resonances.

- PWA requires Differential cross section and Polarization observables as inputs

Set of Particles and Resonances:

Nucleon resonances spectrum (courtesy of Mike Williams)
The need of ω Photo-production

Why $\gamma p \rightarrow p\omega$?

- The N^* may couple stronger to photon.
- Vector meson and photon share the same quantum number ($J^{PC} = 1^- -$).
- Vector meson production channel ($p\omega$, $p\rho$, $p\varphi$) are under explored.
- The ω is an isospin filter.
- The ω has a lot of statistics.
- The ω threshold lies at the higher lying third resonance region.
- The relatively narrow width of the ω (8.5 MeV) enables a clean detection over background.
CLAS Detector at JLAB

Continuous Electron Beam Accelerator Facility (CEBAF)

CEBAF Large Acceptance Spectrometer (CLAS)
CLAS-g12 and CLAS-FROST (g9a) Experiment

<table>
<thead>
<tr>
<th></th>
<th>FROST-g9a:</th>
<th>g12:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Energy</td>
<td>Maximum at 2.4 GeV</td>
<td>5.7 GeV</td>
</tr>
<tr>
<td>Electron Polarization</td>
<td>Maximum 84.8 %</td>
<td>67.2 %</td>
</tr>
<tr>
<td>Tagged Photon Energy</td>
<td>0.3 - 2.4 GeV</td>
<td>1.1 – 5.45 GeV</td>
</tr>
<tr>
<td>Target Material</td>
<td>Frozen Spin Butanol</td>
<td>Liquid Hydrogen</td>
</tr>
<tr>
<td>Target Polarization</td>
<td>Longitudinal</td>
<td>Unpolarized</td>
</tr>
<tr>
<td>Photon Polarization</td>
<td>Circular and Linear</td>
<td>Circular</td>
</tr>
</tbody>
</table>
Data Analysis

• We choose the decay mode $\omega \rightarrow \pi^+\pi^0$.
• Hence, we are looking for all $\gamma p \rightarrow p\pi^+\pi^-(\pi^0)$ events.
• PID off γ, p, π^+, π^- are reconstructed using the information from Start Counter, Drift Chamber, Time of flight and Tagger.
• π^0 is reconstructed using kinematic fitting.
• To isolate $\gamma p \rightarrow p\omega \rightarrow p\pi^+\pi^-(\pi^0)$ we apply event based Q-factor method.
Differential Cross Section & Polarization Observable E

The differential cross section

\[
\frac{d\sigma}{d\cos\theta_{\text{CM}}^\omega} = \left(\frac{A_{\text{target}}}{\rho_{\text{target}} \cdot l_{\text{target}} \cdot N_A \cdot \text{Flux}} \right) \frac{\sum_i^n Q_i}{\Delta \cos\theta_{\text{CM}}^\omega \cdot \varepsilon_{\text{MC}} \cdot BR}
\]

- The number of ω yields is the sum of Q-value.
- The detector acceptance is modelled using montecarlo simulation

The Polarization observable E

\[
E = -\frac{1}{\Lambda_{z} \delta_{o}} \left(\frac{N_+ - N_-}{N_+ + N_-} \right)
\]

- Polarization observable E is the asymmetry between the ω produced when the polarization of the beam and target are parallel and antiparallel).
- Measured asymmetry is normalized by the product of beam and target polarizations,
Preliminary Results
& Discussion

1. Polarization Observable E along with Bonn-Gatchina PWA Fit:

- The figure shows the polarization observable E from CLAS-FROST at 1.1 – 2.3 GeV (red point) along with the Bonn-Gatchina PWA fit result (solid line), in comparison with the previous measurement from CBELSA/TAPS (blue point).
- The dominant contribution from $N(1720)$ 3/2+ is found.
- The background is dominated by the t-channel contributions (pomeron-exchange and a smaller π-exchange).
- The full description of the data need the contribution from:
 - $N(1680)$ 5/2+
 - $N(2000)$ 5/2+
 - $N(1895)$ 1/2−
 - $N(2100)$ 3/2−
The cross section behavior due to the t channel pomeron exchange is expected to falling off exponentially at low t.

We see that the pomeron exchange contribution is more dominant when the energy is increasing.

But there are still significant contributions from non Pomeron exchange at the region $4.0 - 4.5$ GeV).
Summary

• $\gamma p \rightarrow p\omega$ is a great channel for Baryon resonances study.
• The high statistic of the differential cross section and the polarization observable E have been measured at JLAB using CLAS-g12 and CLAS-FROST dataset.
• The Bonn-Gatchina PWA fit found some resonance contributions as well as the t-channel contributions from pomeron-exchange and a smaller π-exchange.
THANK YOU