Transition Form Factors of Light Mesons

New Frontiers in QCD 2018 May 28 - June 29, 2018 Yukawa Institute for Theoretical Physics, Kyoto University

Susan Schadmand

Thanks for workshop invitation YITP Kyoto and cross appointment with RCNP Osaka!

WASA-at-COSY physics and the fate of WASA

- meson production
- charge symmetry breaking
- dibaryons (ABC effect)
- \rightarrow M.Bashkanov ... tbc at CLAS, JLab

• light meson decays

- \rightarrow CAA-LMD and further at CLAS, JLab
- η-mesic nuclei
- \rightarrow P.Moskal and K.Itahashi et al. ... tbc with η' nuclei at FRS, GSI/FAIR WASA central detector is being moved to GSI (T. Saito)

light meson decays

WASA-at-COSY: π, η

 \bigcirc

the orginal proposal for bringing WASA to COSY :

Proposal for the wide angle shower apparatus (WASA) at COSY-Julich: WASA at COSY

WASA-at-COSY Collaboration, e-Print: nucl-ex/0411038

CLAS: π, η, ω, η'

the orginal proposal:

CAA Photoproduction and Decay of Light Mesons in CLAS https://wiki.jlab.org/lmd/

> JÜLICH Forschungszentrum

light meson decay publications

- Search for C violation in the decay $\eta \rightarrow \pi^{\circ}+e^{+}+e^{-}$ with WASA-at-COSY *F.S. Bergmann*, e-Print: arXiv:1802.08642, submitted PLB
- Measurement of the $\omega \rightarrow \pi + \pi \pi 0$ Dalitz plot distribution L. Heijkenskjöld, S. Sawant, Phys.Lett. B770 (2017) 418
- Measurements of branching ratios for η decays into charged particles D. Coderre, P. Wurm, M. Hodana, Physical Review C, 94 (2016) 65206
- Measurement of the $\eta \rightarrow \pi + \pi \pi 0$ Dalitz plot distribution *P. Adlarson*, Phys.Rev. C90 (2014) 4
- Search for a dark photon in the pi0 --> e+e-gamma decay *C.-O. Gullström*, Phys.Lett. B726 (2013) 187
- Exclusive Measurement of the eta --> pi+ pi- gamma Decay *C.F. Redmer*, Phys.Lett. B707 (2012) 243
- Measurement of the eta->3pi0 Dalitz Plot Distribution with the WASA Detector at COSY

P. Vlasov, Phys.Lett. B677 (2009) 2

Stefan Leupold Uppsala University

conversion decays

Reactions of hadrons with virtual photons

- intrinsic structure of hadrons
 - transition form factors
 - validity of vector meson dominance
- background for physics beyond the standard model
 - rare decays
 - eg $\pi \rightarrow ee$
 - g-2 anomalous magnetic moment of the muon
 - light-by-light scattering

g-2 measurements: Fermilab and J-PARC

theory confronts experiment

Role of hadronic decays for g-2

conversion decays

conversion decays

Transition Form Factors

form factor: divide experimental q² distribution by QED

 $\Lambda \simeq m_{\rho} (\Lambda^{-2} = b_{AB})$ 'standard' VMD, b~1.69/GeV²

(old) world data set: conversion decays

L.G. Landsberg, Electromagnetic decays of light mesons

IHEP in 1978—1980 on the "Lepton-G" spectrometer

for *ω* meson, additional mechanisms apart from standard VMD ?

(black curves are fits to the data)

confirmed by NA60 AA reactions, S. Damjanovic, PLB 677 (2009) 260
 confirmed by NA60 pA reactions, A Uras, J Phys. Conf Ser 270(2011) 012038

confirmed by NA60 pA reactions, A.Uras, J.Phys. Conf.Ser.270(2011) 012038

different experimental approach: elementary reactions, using di-electrons

new data sets: η transition form factor

 η and η' improve data base and look for double conversion decays ω meson, whats happening at the high mass end?

status of the ω - π transition form factor

- A2 results are in better agreement with theoretical calculations, compared to earlier experiments
- statistical accuracy of the present data points at large m (ee) masses does not allow a final conclusion

a tale of two experiments

CLAS Jefferson Lab	experimental issue	WASA COSY-Jülich
$\gamma + p$ (g12 experiment)	cross sectionmultipion background	<i>p</i> + <i>p</i> (2010)
LH ₂ target	external γ conversion	pellet target + beam pipe
Cerenkov Counters	dilepton identification	
EM calorimeter	photon detection	CsI EM Colrimeter

experimental approach WASA-at-COSY

experimental approach WASA-at-COSY

Forschungszentrum

particle identification WASA central detector

example PID:

analysis of p + d \rightarrow ^3He + η

- ³He selected in WASA forward detector
- low-energy proton background visible (in thin plastic scintillator)

Measurements of branching ratios for $\boldsymbol{\eta}$ decays into charged particles

Physical Review C, 94(6), 65206

η meson tagging with forward detector

pd \rightarrow ³He η and pp \rightarrow pp η

missing mass method: meson

tagging

$$MM = \sqrt{(E_{initial} - E_{recoil})^2 - (\vec{P}_{initial} - \vec{P}_{recoil})^2}$$

detection of all decay products

experimental challenge p+p reactions

<u>method:</u>

reconstruct meson mass peak, use full final state information

2 types of background:

- 1. multi-pion background meson production cross sections
- → smooth background under meson mass peak example:
 - signal $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay
 - background direct $\pi^+\pi^-\pi^0$ production
- 2.) competing meson decays relative branching ratios
- → peaked background at the meson mass peal subtract via simulations

example:

- signal η→e⁺e⁻γ decay
- background (eg) from $\eta \rightarrow \gamma \gamma$ decay

Forschungszentrum

conversion decay $\eta \rightarrow \gamma e^+ e^-$

'benchmark decay'

analysis: new base class for pp eta analyses

- full particle multiplicities
- improved particle id (neural networks)
- kinematic fit

 \rightarrow can improve the efficiency and signal/background

in parallel, look at $\eta \rightarrow eeee$

further: study in $\gamma p \rightarrow p \eta(\prime)$ and ω with CLAS/JLab

preliminary analysis: only 50 counts new analysis: improve statistics look at pp pi0 data

→eeee

n

integral 51.9013 error 7.20426 eff 0.0098225 BR rel to eta2gee 0.00328246 +- 0.000455628 → BR 2.2649e-005 +- 3.14383e-006 PDG 2.4e-005 +- 2.2e-006 WASA-at-COSY p+d→3He+eta: (3:2 +-0:9stat +-0:5sys) *1e5

the decay $\eta{\rightarrow}\text{eeee}$

double virtual photon decay, branching ratio, 2 dimensional transition form factor?

KLOE 2011	362 ± 29	BR $\eta \rightarrow e + e - e + e - (\gamma) = (2.4 \pm 0.2_{stat+bckg} \pm 0.1_{syst}) \times 10^{-5}$	
WASA 2016	$18.4 \pm 4.9_{(stat)}$	BR $\eta \rightarrow e + e - e + e - = (3.2 \pm 0.9_{stat} \pm 0.5_{sys}) \times 10^{-5}$	

WASA pd \rightarrow ³He η 3 x10⁷ η mesons produced (14 040 ± 120) $\eta \rightarrow \gamma ee$ events (12% efficiency) (18 ± 5) $\eta \rightarrow eeee$ events (3% efficiency)

WASA 2010 pp \rightarrow pp η indeed, < 50 $\eta \rightarrow$ eeee to be expected?? *

* meanwhile: more statistics possible by improved tracking (nuclear interactions of protons in detector)

CLAS approved analysis **CAA-LMD**

hadronic decays: Dalitz plot analysis				
$\eta \to \pi^0 \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	g12	Daniel Lersch	analysis report in progress	
$\omega \to \pi^0 \pi^+ \pi^-$	g12	Chris Zeoli	• PhD 2016 FSU	
$\eta' \to \eta \; \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$	g12,(g11)	Sudeep Ghosh	analysis report submitted	
f.s. η π⁺π⁻	g12	Cathrina Sowa	PhD 2016 Bochum	
radiative decays: box anomaly, branching ratio				
$\eta' \to \pi^*\pi \ \gamma$	g11	Georgie Mbianda Njencheu	analysis report submittedPhD 2017 ODU	
$\eta \to \pi^{*}\pi^{-}\gamma$	g11	Torri Roark		
$\rho{\rightarrow}\pi^{*}\pi^{-}\!\gamma$	g11	Tyler Viducic		
conversion decays: electromagnetic transition form factor				
$\pi \to \gamma \; e^+ e^-$	g12	Michael Kunkel	 paper draft on π⁰ cross section PhD 2014 ODU 	
$\omega ightarrow \pi^0 e^+ e^-$	g12	Susan Schadmand		
η' → γ e⁺e⁻	g12	(Michaela Schever, Master 2015)	 Jülich proposal for CLAS12 (M.Kunkel and D.Lersch), 	

fixed target experiment with energy-tagged Bremsstrahlung photon beam from 6GeV CEBAF		
LH ₂ target	main source for <i>external γ conversion</i>	
magnetic field	charged particle tracking momenta and <i>charge state</i>	
Cerenkov Counters	excellent electron-positron identification	
EM calorimeter	particle identification (limited acceptance photon detection)	

analysis strategy cut-based analysis

analysis strategy cut-based analysis

• smooth background

- ← fit and subtract
- in-peak background (competing decays) ← simulations
- photon conversion from $\pi \rightarrow \gamma \gamma$

← simulations, small ee masses

* based on dilepton analysis of M.C.Kunkel

towards the ω - π^0 transition form factor

all π⁰ ee candidates

scaled background background subtracted

0.4

0.5

dilenton mass M(ee) /GeV

0.6

signal region

smooth background subtraction

in-peak and smooth background subtracted

preliminary analysis: so far, consistent with A2 result (and VMD?)

Mitglied der Helmholtz-Gemeinschaft

in-peak background

simulations for in-peak background reveal:

- external conversion at small
 masses
- combinatorics at large masses
- influence of rho/omega diletpon decay
- effect of (strict) cut-based analysis
- new analysis -> more statistics ?!

$\eta' \rightarrow \gamma ee$: cut-based analysis

- CLAS g12 experiment
- data analysis: g12 procedures
- q-factor signal extraction: evaluate <u>smooth background</u> event-by-event
- > 359 event candidates
- 82 events (signal weight)
- **CLAS6 not competitive with BESIII**

summary

electromagnetic transition form factors of light mesons

- WASA-at-COSY
 - π^0 , η single and double conversion decays
 - planning new analysis (statistics)
- CLAS g12 experiment
 - π^0 , η , η' , and ω decays
 - planning new analysis
 - use of kinematic fit
 - statistics
 - combinatorics
- CLAS12 campaigns:
 - η^\prime decays proposed
 - other proposals to come

