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This study measures the beam spin asymmetry for positively charged kaons in semi-inclusive deeply
inelastic scattering over four SIDIS kinematic variables. The unpolarized cross section is,
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The beam spin asymmetry is sensitive to the sine moment, which is pure twist-3.
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Previous CLAS measurements demonstrate that for pions, the SIDIS beam spin asymmetry is not
consistent with zero.
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Experimental Considerations - How do we actually measure this?

1 Nt _ N- This measurement is performed at
BSA,;, = . L Jefferson Laboratory In Hall B by CLAS.
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All hits 1.1e+07
Identified Electrons 4.8e+06

Sector 2 Q%=2.820
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A brief overview of electron identification.

® Sampling fraction cut (momentum dependent)
® Geometrical fiducial cuts (DC, EC, CC)
® Cherenkov PMT matching cuts (theta, phi)

® EC energy deposition cut
® /-vertex cut
® kinematic corrections done after ID.
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A brief overview of kaon identification.
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Kinematics of SIDIS Kaons
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Simple binning for 4 axes of interest
The z-range is restricted in non-z axes (0.25, 0.75).

Binning Scheme
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Figure: The distribution of z is shown for 30 evenly sized bins,
overlaid are the 11 bin edges used to define the 10 analysis bins.
In the lower figure, the counts for each of the 10 (unevenly sized)
analysis bins is shown.
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Beam spin asymmetry results with systematic uncertainties.. To be explained next
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Beam spin asymmetry results with systematic uncertainties.. To be explained next
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Systematic uncertainties from EC fiducial cuts
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Average Systematic: x

EC-U

Confidence (Kaon ID)
Kaon momentum

EC energy deposition
EC-W

Sampling fraction

7z-vertex

Fid. DC R1
EC-V

Fid. CC
Fid. DC R3

Beam polarization

0.00 002 004 006 008  0.10  0.12
Fraction of total

David Riser

University of Connecticut



APS DNP 2018: Hawaii

| WW | it
o.oo_l-_ | Ut

0.04 +
0.04 1

-
a0

=
<

+

sin ¢
ALU
-
-
DO

0.02 - +

After fitting the beam spin asymmetry the sine coefficient can be extracted as a function of the
kinematic variables. Systematic errors are calculated again in the same way previously described.
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Points of conclusion

e [or the first time, we have measured integrated BSA for positive kaons in SIDIS.
e (ur results for positively charged kaon BSA measurements in SIDIS demonstrates that

twist three TMD functions are non-zero at JLab 6 GeV kinematics.
e A theoretical study is being prepared, and an analysis note is in review.

Thanks to the following people for helping with this analysis:

Kyungseon Joo, Harut Avakian, Nick Markov, Andrey Kim, Nobuo Sato,
Nathan Harrison, Kemal Tezgin, Frank Cao, and Brandon Clary

For various parts of the analysis | thank previous workers:
Wes Gohn, Marco Mirazita, Nathan Harrison
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Extra Slides
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Recall what we are measuring

dot —do™ A%?fb sin ¢
dot +do~ 14 AT ? cos ¢ + ACOS(%) cos(2¢)

BSA =

We minimize the total chi-2 (with respect to the parameters a) for each kinematic bin by
gradient descent

2 Z( obs(¢z)) p’red(¢z; ))

2
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One would be very happy to extract all 3 moments, in some cases it may be possible.
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Measurement of the beam spin asymmetry is done experimentally by recording events
with different electron helicity states and counting the ratio below. Helicity flipping occurs
at high enough frequency that acceptance effects are expected to cancel.
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The average beam polarization was determined to be (75 +/- 3) %, and the wave-plate
position was determined as a function of run number by analyzing the sine phi moment for
positive pions.
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Treatment of systematic uncertainties

Analysis depends on some set of parameters, cut values, calibration values, etc.

0= (6;,0,...0N)

The values of these parameters impact the outcome of the measurement of your observable.
The standard formula for error propagation is,

20 9O
L L 59, 00, 1071007

1=1 5=1

However it is not analytically possible to find in most cases the relationship between the
parameter and the observable.

J(BSA) B
O(ECU Cut Value)
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Numerically find the derivative around the nominal parameter value
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Electron Momentum Corrections Before and After

Counts

-y 0 =3 I I I III [ I L=

25000 — — - 4

L i 25000 — —

r ] L i

L i 20000 (— —

n C ] - .
.g B ] L i
15000 — — . 2

3 C i 15000~ ]
(5] - - | .
10000 — — 10000 — _
5000{— — s000— _

0

Counts

1 1.1 1.2
W (Gev/c?) W (Gev/c?)

David Riser

University of Connecticut




APS DNP 2018: Hawaii

ClwfDl =z ) € /dQﬁJ_CFEJ_(S@) (ﬁl — k1 — ﬁu/z) w(pL, k1) f*(z,p1) D (2, k)

Structure functions are generically written as convolutions of TMD PDFs and TMD Fragmentation Functions
(TMD FFs), which encode information on the final state hadron.
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What are the quarks doing inside of the proton? How do they distribute themselves (in space and in
momenta)?

“Leading-Twist” TMD Quark Distributions The momentum structure of the proton can be

described in terms of transverse momentum
dependent parton distribution functions (TMD

Nucleon PDFs).
Unpol. Long. Trans.
Quark

Unpol. fl = ° fi'r - 6

s 2
] f (x s D1 )
onhg B~ &~ - & giT ~ & B $
. L longitudinal momentum fraction of struck quark
Trans. 2 e - o h”=é B 6 2 Momentum in plane transverse to the hard
“-Q@ - @0 . & 6 Pl omentum transfer
hyp = =

Above: Eight leading order TMD PDFs exist, and

each describes a different combination of quark/
nucleon spin.
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What are the quarks doing inside of the proton? How do they distribute themselves (in space and in
momenta)?

“Leading-Twist” TMD Quark Distributions Many different experiments are being conducted to

measure observables that can be used to extract
different functions.

Nucleon
Unpol. Long. Trans.
Quark fl The unpolarized function, shows up in

unpolarized SIDIS cross section.
Unpol. n =@ £ =6 _

| The Sivers function, shows up in single
177" spin target asymmetries.

gL °_>_ o_' g1T =

i

® - o

Trans. |, L hlfé - 6
6 -6

Long

hJ_ The Boer-Mulders, shows up in cosine
1 modulations of unpolarized cross section,
as well as beam spin asymmetries.
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Quarks are charged and interact electromagnetically, physicists can use QED to probe the system
which is bound by QCD.

hadron plane Semi-Inclusive Deeply Inelastic Scattering (SIDIS) of
electrons off of protons or neutrons is one example
Pr P of a process described by QED that can be used to
¢ ¢ measure observables sensitive to TMDs.

B2

q z
‘ Ay KL 1
lepton plane / v p

Assuming one photon exchange the SIDIS cross section can be expressed in terms of
model independent structure functions (these contain the TMDs)

do
drp dQ? dz d¢y, dp? |
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= K(z,y, QQ){FUU,T +elyur

(without polarized target)

Mulders, Tangerman (1995) Complete tree-level result for polarized deep-inelastic lepto-production.
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Beam Spin Asymmetry (BSA) measurements are a good tool for extracting “moments”.
+ _ sin ¢ -
do do~ A} sing
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BSA =
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| Colllns FF
twist-3 pdf twist- 3 t-odd Boer-Mulders
dist. function
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This observable is particularly interesting because each of the four terms has a twist three piece, implying that if higher
order TMD functions are not important the beam spin asymmetry should be zero (this statement depends on the
kinematics over which the beam spin asymmetry is measured).
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