Differential Cross Section for $\gamma d \rightarrow \omega d$ using CLAS at Jefferson Lab

Taya Chetry Ken Hicks Ohio University

APS April Meeting 15 April 2018

Goal

Motivation

- π -N scattering provides access to fundamental questions
 - Baryon spectrum of QCD
 - Chiral dynamics of QCD
 - Study of isospin violation
 - Internal structure of the nucleon
- Just imagine the possibilities with other mesons, say a vector meson!
- Experimental challenges:
 - Short lifetimes ~10²³ s
 - Vector meson beams cannot be produced in a lab.
- Extract ωN cross section
 - LQCD ($\pi\pi$ scattering)
 - Physics Models

T. Chetry, Ohio University

Goal

Motivation

- π -N scattering provides access to fundamental questions
 - Baryon spectrum of QCD
 - Chiral dynamics of QCD
 - Study of isospin violation
 - Internal structure of the nucleon
- Just imagine the possibilities with other mesons, say a vector meson!
- Experimental challenges:
 - Short lifetimes ~10²³s
 - Vector meson beams cannot be produced in a lab.
- Extract ωN cross section
 - LQCD ($\pi\pi$ scattering: ho resonance)
 - Physics Models

T. Chetry, Ohio University

Vector Meson Dominance

- Two processes: $\gamma N \rightarrow \omega N$ $\omega N \rightarrow \omega N$
- Slope parameters: $\succ \ b_{\gamma N} \mbox{and} \ b_{\omega N}$
- Ratio of Re(A) and Im(A): • $\alpha_{\gamma N}$ and $\alpha_{\omega N}$

Theory

- Deuteron acts as an Isospin filter for I = 0 only.
- Vector Meson off deuterium simplifies theoretical interpretations of the data.

T. Chetry, Ohio University

CLAS @ JLab

Detector

Vector Mesons off Deuteron in CLAS Motivation

Highlights:

- *g*10 data
- A rescattering model is used.
- Within VMD, data is consistent with $\sigma_{\phi^{\rm N}}$ at about 10 mb.
- In the model, larger $\sigma_{\phi^{\rm N}}$ is possible by taking $b_{\gamma^{\rm N}} > b_{\phi^{\rm N}}$

T. Chetry, Ohio University

Previous results

 $\gamma d \rightarrow \omega d$

Limited World Data

- Mostly from Bubble Chamber experiments.
- Missing double scattering effect.

Experiment	Energy	Target	Measured quantities	$ T_0^N ^2$ (μ b/GeV ²)	$\sigma_{\omega N}$ (mb)	$\hat{f}_{\omega}^2/4\pi$	Assumptions	Comments
SLAC-Berkeley Ballam <i>et al</i> .	9.3	н	$\left. \frac{d\sigma}{dt} \right _{\omega}$	11.4 ± 2.1	•••	25.3 ± 4.7	$\sigma_{\omega N} = 27 \text{ mb}$ $\alpha_{\omega} = -0.24$	No correction for A_2 exchange
(1973)							$\left. \frac{d\sigma}{dt} \right _{t=0} = T_0^N ^2$	
Rochester	8.3	D, Be, C, Al	$\frac{d\sigma}{dt}$	7.4 ± 0.5	25.4 ± 2.7	30.4 ± 4.8	$\alpha_{\omega N} = -0.24$	Corrected for A_2 exchange
Abramson <i>et al</i> . (1976)		Cu, Po	$at \mid t=0$					N.,
Tel Aviv Alexander <i>et al</i> . (1975)	7.5	D	$\left. \frac{d\sigma}{dt} \right _{\omega}$	11.2 ± 2.5		25.7 ± 6.5	$\sigma_{\omega N} = 27$ $\alpha_{\omega} = -0.24$	
Tel Aviv Alexander <i>et al</i> .	7.5	D	$\left. \frac{d\sigma}{dt} \right _{\rho, \omega}$		•••	$15.5^{+7.0}_{-2.8}$	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{d\sigma}{dt}\bigg _{\rho}\bigg/\frac{d\sigma}{dt}\bigg _{\omega}$	The rho cross section was anomalously low
(1975)			$\left. \frac{d\sigma}{dt} \right _{\rho} \left \frac{d\sigma}{dt} \right _{\omega} = 7.1^{+2.0}_{-1.2}$				$\hat{f}_{\rho}^{2}/4\pi = 2.18$	
Pisa_Bonn Braccini <i>et al</i> . (1970)	5.7	C, Al, Zn, Ta, Ag, Pb	Smeared cross section	13.5 ± 3.3	27.0 ^{+6.0} -5.5	22.0 ± 5.4	$\alpha_{\omega N} = -0.3$	Poor t resolution and uncertainties in background correction

Previous results

Limited World Data

- Best data till date is from the Weizman Institute of Science
- $E_\gamma = 4.3~{\rm GeV}$ and $|t| < 0.2~{\rm GeV^2/c^2}$

Experiment	Energy	Target	Measured quantities	$ T_0^N ^2$ (μ b/GeV ²)	$\sigma_{\omega N}$ (mb)	$\hat{f}_{\omega}^2/4\pi$	Assumptions	Comments
Weizmann Eisenberg <i>et al.</i> (1976)	4.3	D	$\left. \frac{d\sigma}{dt} \right _{\omega}$	18.5 ± 4.5		15.6 ± 3.8	$\sigma_{\omega N} = 27 \text{ mb}$ $\alpha_{\omega N} = -0.24$	
Weizmann Eisenberg <i>et al</i> .	4.3	D	$\left. \frac{d\sigma}{dt} \right _{\rho}$		••••	$14.6^{+4.9}_{-3.0}$	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{d\sigma}{dt}\Big _{\rho}/\frac{d\sigma}{dt}\Big _{\omega}$	
(1976)			$\frac{d\sigma}{dt}\bigg _{\rho}\bigg/\frac{d\sigma}{dt}\bigg _{\omega} = 6.7\frac{1}{2}$	2.1 1.3			$\hat{f}_{\rho}^{2}/4\pi = 2.18$	
Harvard–CEA Gladding <i>et al</i> .	4.2	H	$\left. \frac{d\sigma}{dt} \right _{\rho, \omega}$			16.8 ± 2.8	$\hat{f}_{\omega}^2/\hat{f}_{\rho}^2 = \frac{d\sigma}{dt}\Big _{\rho}\Big/\frac{d\sigma}{dt}\Big _{\omega}$	No correction for OPE or A_{2} exchange
(1973)		1997) 1997 - 1997 1997 - 1997	$\left. \frac{d\sigma}{dt} \right _{\rho} \left \frac{d\sigma}{dt} \right _{\omega} = 7.7 \pm$	-0.12			$\hat{f}_{\rho}^2/4\pi = 2.18$	
ABHHM Benz et al.	1.3-5.3	D	$\sigma_{ ho,\omega}$				$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{\sigma(\gamma d \to \rho d)}{\sigma(\gamma d \to \omega d)}$	
(1974)			$\frac{\sigma(\rho)}{\sigma(\omega)} = 7.2^{+2.7}_{-1.6}$			$15.7_{-3.7}^{+6.2}$	$\hat{f}_{\rho}^{2}/4\pi = 2.18$	
Lancaster Morris <i>et al</i> .	3.9	D	$\frac{d\sigma}{dt}\Big _{\rho,\omega}$	14.5 ± 5.4		15.3 ± 6.4	$\hat{f}_{\omega}^{2}/\hat{f}_{\rho}^{2} = \frac{\sigma(\gamma d \to \rho d)}{\sigma(\gamma d \to \omega d)}$	Poor-resolution experiment
(1976)							$\hat{f}_{\rho}^{2}/4\pi = 2.18$	
Colliding beams						18.4 ± 1.8		

Differential Cross Section for $\gamma d \rightarrow \omega d$

T. Chetry, Ohio University

Global Spectrum: g10 Data

- Basic cuts to reduce background:
 - z-vertex cut
 - Fiducial cut
- Minimum Momentum cut, etc.

- Corrections applied:
 - Momentum corrections
 - Energy loss corrections
- Signal over smooth background.

T. Chetry, Ohio University

Binning

 $\gamma d \rightarrow \omega d$

4 incident photon energy and variable 4-momentum transfer bins.

Yield extraction

 $\gamma d \rightarrow \omega d$

 $E_{\gamma} = [1.4, 1.8] \text{ GeV}$

Yield is extracted by taking integral of the Voigt function

Differential Cross Section for $\gamma d o \omega d$

T. Chetry, Ohio University

Differential Cross Section

Differential Cross Section for $\gamma d o \omega d$

T. Chetry, Ohio University

Model based on VMD

 $\gamma d \rightarrow \omega d$

Differential Cross Section for $\gamma d \rightarrow \omega d$

T. Chetry, Ohio University

Results

 $\gamma d \rightarrow \omega d$

$b_{\gamma N} = b_{\omega N}$	$\frac{d\sigma}{dt}\Big _{t=0,\gamma N}$	$\sigma_{\omega N}$	χ^2/NDF
$\left[GeV^{-2}/c^{-2}\right]$	$[\mu b/(GeV^2/c^2)]$	[mb]	
7.5	15	31	1.13
8.0	14	34	1.15
8.0	15	33	1.01
8.0	16	32	0.96
8.0	17	31	1.00
8.0	18	30	1.15
8.0	19	30	0.91
8.0	19	31	0.87
8.0	20	30	1.03
8.5	16	35	1.11
8.5	16	39	1.00
8.5	17	34	1.05
8.5	18	33	1.07
9.0	19	39	0.89
9.0	20	38	0.87

 $|\chi^2/F$ - 1.0| < 0.15

 $30 < \sigma_{\omega N} < 40 \text{ mb}$

This range is typical of hadronic cross-sections in the energy range!

Differential Cross Section for $\gamma d o \omega d$

- Access to lower energy and larger momentum transfer to investigate $\omega\text{-}\mathrm{N}$ scattering.
- First high statistics world data for the reaction: $\gamma d \rightarrow \omega d$. Extracted 30 < $\sigma_{\omega N}$ < 40 mb using a rescattering model based on VMD for E_{γ} = [2.8, 3.4] GeV.
- The cross-section data provides sensitivity to the nucleon-scattering data in the energy and momentum transfer range mentioned.
 Submitted to PLB, arXiv:1802.06746

- Physics Motivation
- Vector Meson Dominance
- CLAS Detector @ JLab
- Differential Cross Section
- Results
- Summary