Hadronization in Semi-Inclusive DIS from CLAS at Jefferson Lab

Taisiya Mineeva

Universidad Técnica Federico Santa María

for the CLAS collaboration

Outline of my talk

Hadronization - fundamental process of QCD

Experimental realization: CLAS at 6 GeV

• Future at CLASI2 and EIC

Hadronization - why is it interesting?

Hadronization is fundamental QCD process

Hadronization describes the transition between colored d.o.f to composite colorless objects
Propagation of color relies on key property of QCD as color gauge theory - asymptotic freedom
Restoration of color neutrality from QCD vacuum is dynamical enforcement of confinement

Short distances I<<1fm q and g in QCD vacuum

Long distances

color charge anti-screening color flux tube between qq

Visualization of QCD from D.Leinweber

from S.Bethke Prog.Part.Nucl.Phys.58 (2007)

Hadronization - why is it interesting?

Hadronization is fundamental QCD process

Hadronization describes the transition between colored d.o.f to composite colorless objects
Propagation of color relies on key property of QCD as color gauge theory - asymptotic freedom
Restoration of color neutrality from QCD vacuum is dynamical enforcement of confinement

4

 Hadronization spans over pQCD & non-pQCD regimes - space-time view of factorization

Hadronization - why is it interesting?

Hadronization is fundamental QCD process

Hadronization describes the transition between colored d.o.f to composite colorless objects
Propagation of color relies on key property of QCD as color gauge theory - asymptotic freedom
Restoration of color neutrality from QCD vacuum is dynamical enforcement of confinement

✓ Hadronization spans over pQCD and non-pQCD regimes space-time view of factorization

Benchmark in describing heavy ion collisions

Color propagation in DIS, DY and HI

Accardi, Arleo, Brooks, d'Enterria, Muccifora Riv.Nuovo Cim.032:439553,2010 [arXiv:0907.3534]

Fundamental QCD proceses in DIS

Partonic elastic scattering in medium Gluon bremsstrahlung in vacuum and in medium

Color neutralization Hadron formation

Color lifetime τ_c is the color lifetime or lifetime of highly virtual quark following hard processes

Formation time h_{f} is the time or distance required for a colored system to evolve into a color singlet system Quark - nucleus interactions: pQCD aspects

How does color interact with medium ?

Lifetime of propagating colored object - confinement

✓ Quark pQCD energy losses, transverse momentum broadening

Quark - hadron evolution: non-pQCD aspects

What are the mechanisms of color neutralization?

✓ Characteristic times of hadron system to evolve into color singlet

✓ Map the mechanism of fragmentation of correlated q and g

Nuclei as space-time analyzer

llo

200

200

- ✓ Use nuclei of variable size as a 'ruler': R_{Carbon} = 2.7 fm vs R_{Lead} = 7.1 fm
- ✓ Medium well known, low final multiplicities
- Extract characteristic quantities as a variation of observables with nuclear size

20

Experimental realization: CLAS at 6 GeV

CEBAF and CLAS @ 6 GEV

CEBAF Large Acceptance Spectrometer

- Charged particle angles 8° 144°
- •Neutral particle angles 8° 70°
- Momentum resolution ~0.5% (charged)
- Angular resolution ~0.5 mr (charged)
- Identification of p, π^+/π^- , K⁺/K⁻, e⁻/e⁺

N. A. Mecking *et al.*, *The CEBAF large acceptance spectrometer (CLAS)*, Nucl. Inst. and Meth. A 503, 513 (2003).

EG2 experiment @ 6 GEV

CLAS EG2 experimental conditions:

• Electron beam 5.014 GeV

Jefferson Lab

class

- Targets ²H, ¹²C, ⁵⁶Fe, ²⁰⁷Pb (Al, Sn)
- ²H separated from solid targets by 4cm
- Instant luminosity $2 \cdot 10^{34} \ 1/(s \cdot cm^2)$

Spokes persons: W.Brooks, K.Hafidi, L. El Fassi, H.Hakobyan, K.Joo et *al*.

> see Hayk Hakobyan talk on double-target systems @ CLAS and CLAS12

observables

Transverse momentum broadening

Connects to color propagation phase:

- color lifetime au_C
- quark energy loss

Transverse momentum broadening

$$\Delta p_T^2 = < p_T^2 >_{\rm A} - < p_T^2 >_{\rm D}$$

where pT is transverse momentum w.r.t γ^* direction

see . Jorge Lopez talk on extraction of color lifetime from cold nuclei!

Hadronic multiplicity ratio

The multiplicity rate M_n^h of hadrons h on nuclei n is defined as ratio of the differential SIDIS cross section over the differential DIS cross section.

$$M_{n}^{h}(x_{B}, Q^{2}, z_{h}, P_{T}) \equiv \frac{1}{\frac{d^{2}\sigma^{\text{DIS}}(x_{B}, Q^{2})}{dx_{B} dQ^{2}}} \frac{d^{4}\sigma(x_{B}, Q^{2}, z_{h}, P_{T})}{dx_{B} dQ^{2} dz_{h} dP_{T}}$$

Experimentally, the particle yield $N = \sigma L$ where L is luminosity

Measured hadronic multiplicity ratio R_A^n on nuclear target A normalized to D is then:

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}|_{\rm D}}$$

An expression of experimental R^h_A in parton model, assuming factorization, is expressed in terms of the ratio of PDF and FF

$$R_{D}^{A} = \frac{\left\{\frac{\sum_{f} e_{f}^{2} q_{f}(x) D_{f}^{h}(z)}{\sum_{f} e_{f}^{2} q_{f}(x)}\right\}_{A}}{\left\{\frac{\sum_{f} e_{f}^{2} q_{f}(x) D_{f}^{h}(z)}{\sum_{f} e_{f}^{2} q_{f}(x)}\right\}_{D}}$$

Hadronic multiplicity ratio

Connects to hadronic phase:

- hadron formation time ${}^{h}\tau_{f}$
- hadronization mechanisms

Measured hadronic multiplicity ratio R_A^n on nuclear target A normalized to D is then:

$$R_{\rm A}^{h}\left(\nu, Q^{2}, z, p_{T}\right) = \frac{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}|_{\rm A}}{\frac{N_{h}(\nu, Q^{2}, z, p_{T})}{N_{e}(\nu, Q^{2})|_{\rm DIS}}|_{\rm D}}$$

An expression of experimental R^{h}_{A} in parton model, assuming factorization, is expressed in terms of the ratio of PDF and FF

Previous measurements

Comparison of CLAS/JLab and HERMES/DESY

- Beam energy: 5.0 GeV at JLab vs 27.6 GeV at DESY
- Solid target in CLAS vs gas targets in HERMES Heaviest target ²⁰⁷Pb in CLAS vs ¹³¹Xe in HERMES
- -Luminosity in CLAS is 100 times greater than HERMES Access to 3D binning in CLAS vs 1-2D binning in HERMES.

	v (GeV)	Q^2 (GeV ²)	Z	pT^2 (GeV ²)
CLAS	2.2 - 4.2	1.0 - 4.1	0,3 - 1,0	0 - 1.5
HERMES	7 - 23	1.0 - 10	0.2 - 1.0	0 - 1.1

HERMES multiplicities R(z, pT²) integrated over V, Q²

Flavor separation: $\pi^{+/-}$, $K^{+/-}$ and p/\bar{p} 2D distributions for charged hadrons 1D extraction of multiplicities for π^{0}

• Pure quark energy loss models: a la BDMPS (Arleo; Accardi)

Higher twist FF (Wang; Majumder)

<u>Pure hadron absorption models</u>: prehadron survival from transport model (Accardi)
GiBuu transport Monte Carlo (Falter)

Pure quark energy loss models: a la BDMPS (Arleo; Accardi)

Higher twist FF (Wang; Majumder)

<u>Pure hadron absorption models</u>: prehadron survival from transport model (Accardi)
GiBuu transport Monte Carlo (Falter)

Accardi, Arleo, Brooks, d'Enterria, Muccifora Riv.Nuovo Cim.032:439553,2010 [arXiv:0907.3534] Both pure quark energy loss and pure hadron absorption describe attenuation R^h on z of HERMES

Modern Lund string model: abs. or en. loss (A.Accardi)

$$\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz} = \frac{1}{\sigma_{\ell A}} \int dx \, d\nu \, \sum_f e_f^2 \, q_f(x, Q^2) \frac{d\sigma_{\ell f}}{dx d\nu} S^A_{f,h}(z, \nu) D^h_f(z, Q^2) \, .$$

<u>Pure quark energy loss models</u>: a la BDMPS (Arleo; Accardi)

Higher twist FF (Wang; Majumder)

<u>Pure hadron absorption models</u>: prehadron survival from transport model (Accardi)
GiBuu transport Monte Carlo (Falter)

<u>Color dipole model</u>: quark energy loss + prehadron absorption (B.Kopeliovich)

describes formation of leading hadrons (z>0.5) dashed line: absorption of color dipole qqbar solid line: absorption and induced energy loss

<u>Pure quark energy loss models</u>: a la BDMPS (Arleo; Accardi)

Higher twist FF (Wang; Majumder)

<u>Pure hadron absorption models</u>: prehadron survival from transport model (Accardi)
GiBuu transport Monte Carlo (Falter)

<u>Color dipole model</u>: quark energy loss + prehadron absorption (B.Kopeliovich)

<u>Multidimensional data are crucial in order to distinguish proposed</u> <u>mechanisms and constrain (many) available theoretical models !!</u>

Multiplicity ratios: data from EG2 3D π⁰ Multiplicities on ¹²C,⁵⁶Fe,²⁰⁷Pb to D

 $R_{\pi 0}$ in (Q^2 , v, z) integrated over ρ_T^2

- Attenuation depends on nuclear size
- Hadron attenuation at high z
- Quantitative behavior compatible with Hermes

Taisiya Mineeva Analysis under review

Multiplicity ratios: data from EG2

3D π^0 Multiplicities on ¹²C, ⁵⁶Fe, ²⁰⁷Pb to D R_{π^0} in (*v*, *z*, ρT^2) integrated over Q^2

Bears resemblance to Cronin effect at high pT2
Quantitative behavior compatible with Hermes

Taisiya Mineeva Analysis under review

Multiplicity ratios: data from EG2 2D π⁻ Multiplicities on ¹²C,⁵⁶Fe,²⁰⁷Pb to D

 R_{π} in (z, p_T^2) integrated over v , Q^2

Raphael Dupré Analysis under review

Multiplicity ratios: data from EG2

3D π^+ Multiplicities on ¹²C,⁵⁶Fe,²⁰⁷Pb to D

 $R_{\pi+}$ in (Q^2 , v, z) integrated over p_T^2

- Attenuation depends on nuclear size
- Increase of hadrons at low z, attenuation at high z
- Quantitative behavior compatible with Hermes

CLAS12 Science Program

Quark confinement and the role of the glue in hadron spectroscopy

 Unraveling confinement forces in the proton. Studying the multidimensional structure of the nucleon – from form factors and PDFs to GPDs and TMDs

The strong interaction in nuclei – evolution of quark hadronization, nuclear transparency of hadrons

 Search for science beyond the Standard Model – precision and intensity frontiers

from Latifa Elouadrhiri

DIS channels: stable hadrons, accessible with 11 GeV JLab future experiment PR12-06-117

currently accessible at CLAS 5 GeV data		measured by HERMES			
meson	СТ	mass, GeV	flavor content		
π	25 nm	0.13	ud		
π+, π-	7.8 m	0.14	ud		
η	170 pm	0.55	uds		
ω	23 fm	0.78	uds		
η	0.98 pm	0.96	uds		
φ	44 fm		uds		
fl	8 fm	1.3	uds		
Ko	27 mm	0.5	ds		
K ⁺ , K ⁻	3.7 m	0.49	US		

W. Brooks INT 2017

Future Electron Ion Collider ElC Program:

Large leverage in V and Q^2

wide range of color lifetime lengths
access to pQCD quark energy loss

Using the prescription $\gamma = \nu/Q$, $\beta = p_{\gamma^*}/\nu$, we can extrapolate:

Q2	nu	beta*gamma	lp, z=0.32	lp, z=0.53	lp, z=0.75	lp, z=0.94	Experiment	X
2.40	14.50	9.31	8.57				HERMES	0.09
2.40	13.10	8.40		6.39			HERMES	0.10
2.40	12.40	7.94			4.63		HERMES	0.10
2.30	10.80	7.05				2.40	HERMES	0.11
3.00	4.00	2.08	1.92	1.58	1.21	0.71	CLAS	0.40
7.00	7.00	2.45	2.26	1.86	1.43	0.83	CLAS12	0.53
1.00	4.00	3.87	3.57	2.95	2.26	1.32	CLAS	0.13
2.00	9.00	6.28	5.79	4.78	3.66	2.14	CLAS12	0.12
12.00	32.50	9.33	8.59	7.10	5.44	3.18	EIC	0.20
8.00	37.50	13.22	12.17	10.06	7.71	4.50	EIC	0.11
45.00	140.00	20.85	19.20	15.86	12.15	7.10	EIC	0.17
27.00	150.00	28.85	26.57	21.96	16.82	9.82	EIC	0.10

for details see Jorge Lopez talk

W. Brooks INT 2017

Summary

Hadronization is a fundamental process of QCD

- Link between perturbative and non-perturbative domains
- A way to probe nuclear media, either cold or hot
- Past results gave the global picture of hadronization in medium
 - CLAS high luminosity data on ²H, ¹²C, ⁵⁶Fe, ²⁰⁷Pb
 - Extraction of multidimensional multiplicities and momentum broadening
 - Analysis under review

Multi-dimensional analysis is crucial to constrain existing models

- CLAS12 experiment (E-12-06-117) will provide high statistics data and access to 4D multiplicities in meson and baryon channels
- Future Electron Ion Collider (EIC)

