Future of 3D Imaging at Jefferson Lab with Focus on CLAS12

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects Kobe, 16 – 20 April 2018

Stephen Bueltmann, Old Dominion University, Norfolk, VA, USA

Jefferson Lab

- Electron beam energy upgrade from 6 GeV to 11 GeV
- Energy spread < 10⁻⁴
- Beam size at target < 400 μ m ($\sigma \le 200 \mu$ m in Hall B)
- Beam polarization > 0.80
- Completed 2017

Jefferson Lab's Hall A and C

- Large moveable spectrometer
- Excellent momentum resolution < 10⁻⁴
- High luminosity $< 10^{38}$ cm⁻² s⁻¹

CLAS12 Detector in Hall B

Forward Detector

- Torus Magnet
- HT Cherenkov Counter
- Drift Chamber System
- LT Cherenkov Counter
- Forward ToF System
- Pre-Shower Calorimeter
- E.M. Calorimeter
- Forward Tagger
- **RICH Detector**

Central Detector

- Solenoid Magnet
- Silicon Vertex Tracker
- Central Time-of-Flight
- Central Neutron Detector
- MicroMegas

<u>Beamline</u>

- Photon Tagger Dump
- Shielding
- Targets
- Moller Polarimeter
- Faraday Cup

CLAS12 Detector Engineering Run in December 2017

- Design luminosity < 10^{35} cm⁻² s⁻¹ (up to 800 nA current)
- 5 T solenoid magnet with 3 · 10⁻⁴ homogeneity

CLAS12 Kinematic Reach

- Conditions
 - Electron beam energy 10.6 GeV
 - 3.6 T toroidal magnetic field (outbending electrons)

CLAS12 Targets

- Liquid hydrogen (2017/18)
 - Proton DVCS (beam spin asymmetries)
- Liquid deuterium (2019)
 - Neutron DVCS (beam spin asymmetries)
- High pressure deuterium gas (2019)
 - Neutron structure F_2^n
- Long. polarized solid NH₃ and ND₃ (2019/20)
 - Proton and neutron spin structure g_1^p and g_1^n
 - SIDIS
 - Proton and neutron DVCS target spin asymmetries
- Trans. polarized solid HD Ice (2021/22)

CLAS12 Solid Polarized Target

C. Keith, Jefferson Lab

Inclusive DIS and Structure Functions

• Lepton scattering off a nucleon

The Nucleon Parton Model and TMDs

Collinear approximation

Parton transverse momentum

$$\vec{P}$$
 \vec{P} \vec{P} \vec{P} \vec{P} \vec{P} \vec{P}

DIS distribution functions

$$f_1(x), g_1(x), h_1(x)$$

more complex dist. functions

$$f_1(x, \vec{p}_T), g_1(x, \vec{p}_T), h_1(x, \vec{p}_T)$$

Transverse Momentum Distributions (TMDs) of partons describe the distribution of quarks and gluons inside a nucleon with respect to x and the intrinsic transverse momentum $p_{\rm T}$ carried by the quarks

Azimuthal asymmetries arise due to correlations of spin and transverse momentum of quarks

Deeply-Virtual Compton Scattering and Meson Production

DVCS gives access to Generalized Parton Distributions

Measure cross-section asymmetries

CLAS12 (SI)DIS Program

Experiment	Physics	Contact	Days	Energy / GeV	Target
E12-06-112	Proton's Quark Dynamics in SIDIS Pion Production	Avakian	60	11	<mark>₩</mark> 2
E12-09-007	Study of Partonic Distributions in SIDIS Kaon Production	Hafidi	30	11	ID₂
E12-09-008	Boer-Mulders Asymmetry in K SIDIS with H and D Targets	Contalbrigo	56	11	<mark>.</mark> ₽
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	80	11	NH ₃ ND ₃
E12-09-007	Study of Partonic Distributions Using SIDIS K Production	Hafidi	80	11	NH ₃ ND ₃
E12-06-113	Free Neutron Structure at Large x	Bueltmann	42	11	D ₂

Longitudinal Structure of the Nucleon (eg12) E12-06-109

- Inclusive spin structure of proton and deuteron
- $\mathcal{L} = 2 \cdot 10^{35} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$
- $P_{\text{beam}} > 0.8$, $P_{\text{target-p}} = 0.8$, $P_{\text{target-d}} = 0.4$

Longitudinal Structure of the Nucleon (eg12) E12-06-109

- Helicity structure of the nucleon in the valence region
 - quark polarization $\Delta u/u$, $\Delta d/d$ as $x \rightarrow 1$

Structure of the Free Neutron (Bonus12) E12-06-113

- Radial TPC to detect recoiling proton in d (e, e' p) X
- RTPC inside central detector solenoid
 - contains high pressure D₂ target

Structure of the Free Neutron (Bonus12) E12-06-113

- Radial TPC to detect recoiling proton in d (e, e' p) X
- 35 days of data taking on D_2 and 5 days on H_2 with $\pounds = 2 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$
- DIS region with
 - $Q^2 > 1 \text{ GeV}^2/c^2$
 - *W**> 2 GeV
 - *p_s* < 100 MeV/*c*
 - $\theta_{pq} > 110^{\circ}$
- Largest value for $x^* = 0.80$ (bin centered $x^* = 0.76$)
- Relaxed cut of $W^* > 1.8$ GeV gives max. $x^* = 0.83$
- Overall scale error 5%
- Constrain d/u ratio

CLAS12 GPD Program

Experiment	Physics	Contact	Days	Energy / GeV	Target
E12-06-108	Hard Exclusive Electroproduction of π^0 and η	Kubarovski	80	11	IH ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	80	11	IH ₂
E12-12-001	Timelike Compton Scattering & J/ Ψ production in e^+e^-	Nadel-Turonski	120	11	IH ₂
E12-12-007	Exclusive ϕ meson electroproduction	Girod	60	11	IH ₂
E12-11-003	DVCS on Neutron Target	Niccolai	90	11	ID ₂
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	120	11	NH ₃
C12-12-010	DVCS with a transverse target	Elouadrhiri	110	11	HD-ice
E12-16-010	DVCS with CLAS12 at 6.6 GeV and 8.8 GeV	Elouadrhiri	50+50	6.6 & 8.8	IH ₂
E12-17-012	Spectator-Tagged DVCS on Light Nuclei	Armstrong	45	11	D ₂ , ⁴ He

CLAS12 Beam Spin Asymmetries

- E12-06-119 taking presently data on hydrogen
- DVCS $A_{\rm LU} \propto F_1 \mathcal{H} + \xi G_{\rm M} \tilde{\mathcal{H}} \frac{t}{4M^2} F_2 \mathcal{E}$
- $\mathcal{L} = 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- *P*_{beam} > 0.8
- Stat. uncertainties 1% (low Q²) to 10% (high Q²)

CLAS12 Beam Spin Asymmetries

- E12-06-119 taking presently data on hydrogen
- DVCS $A_{\rm LU} \propto F_1 \mathcal{H} + \xi G_{\rm M} \tilde{\mathcal{H}} \frac{t}{4M^2} F_2 \mathcal{E}$
- $\mathcal{L} = 10^{35} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- *P*_{beam} > 0.8
- Stat. uncertainties 1% (low Q²) to 10% (high Q²)

CLAS12 Target Spin Asymmetries

- E12-06-119 will take data on polarized NH₃
- DVCS $A_{\rm UL} \propto F_1 \widetilde{\mathcal{H}} + \xi G_{\rm M} \left(\mathcal{H} + \frac{1}{1+\xi} \mathcal{E}\right) \xi \frac{t}{4M^2} F_2 \widetilde{\mathcal{E}}$

Projection of Nucleon Transverse Profile

SoLID in Hall A

- Three SIDIS experiments to study TMDs
 - Measure double and single spin asymmetries on longitudinal and transversely polarized targets
- CLEO-II magnet, full azimuthal coverage

SoLID in Hall A

• Collins single-spin asymmetry in π production

 $A_{\rm UT} \propto h_1 \otimes H_1^{\perp} \sin(\phi + \phi_{\rm S})$

Impact on global analysis of transversity function h₁

SoLID in Hall A

• Sivers function in single-spin asymmetry in π production

 $A_{\rm UT} \propto f_{1\rm T}^{\perp} \otimes D_1 \sin(\phi - \phi_{\rm S})$

• Impact on global analysis of Sivers function f_{1T}^{\perp}

N. Sato, S. Liuti, A. Prokudin

Conclusions

- Jefferson Lab's upgrade to 11 GeV electron beam energy opens window to very large kinematic range
- Enables high-precision measurements of structure functions, TMDs and GPDs to map the 3D structure of the nucleon
- CLAS12 started data taking in 2017
- Experimental program presently covers 10 years of data taking