The EMC Effect and Nuclear Correlations Or Hen (MIT)

Hen Lab

Laboratory for Nuclear Science @

DIS-2018, April 16th 2018.

Nuclear / Parton Scale Separation

Nuclear / Parton Scale Separation

EMC Effect: Quarks move "slower" in nuclei

Aubert et al., PLB (<u>1983</u>); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Submitted (<u>2018</u>)

EMC Effect: Quarks move "slower" in nuclei

Aubert et al., PLB (<u>1983</u>); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Submitted (<u>2018</u>)

EMC Effect: Nuclear Effect

Rev. D **49**, 4348 (1994).

SLAC (1994)

1. Proper treatment of 'known' nuclear effects

[explain some of the effect, up to x≈0.5]

- Nuclear Binding and Fermi motion, Pions, Coulomb Field.
- No modification of bound nucleon structure.

2. Bound Nucleons are 'larger' than free nucleons.

- Larger confinement volume => slower quarks.
- Mean-Field effect.
- Momentum Independent.
- Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

- 1. Proper treatment of 'known' nuclear effects [explain some of the effect, up to x≈0.5]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.

2. Bound Nucleons are 'larger' than free nucleons.

- Larger confinement volume => slower quarks.
- Mean-Field effect.
- Momentum Independent.
- Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

- 1. Proper treatment of 'known' nuclear effects [explain some of the effect, up to x≈0.5]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.

2. Bound Nucleons are 'larger' than free nucleons.

- Larger confinement volume => slower quarks.
- Mean-Field effect.
- Momentum Independent.
- Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

- Proper treatment of 'known' nuclear effects
 [explain some of the effect, up to x≈0.5]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.
- 2. Bound Nucleons are 'larger' than free nucleons.
 - Larger confinement volume => slower quarks.
 - Mean-Field effect.
 - Momentum Independent.
 - Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

- Proper treatment of 'known' nuclear effects
 [explain some of the effect, up to x≈0.5]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.
- 2. Bound Nucleons are 'larger' than free nucleons.
 - Larger confinement volume => slower quarks.
 - Mean-Field effect.
 - Momentum Independent.
 - Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

- Proper treatment of 'known' nuclear effects
 [explain some of the effect, up to x≈0.5]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.
- 2. Bound Nucleons are 'larger' than free nucleons.
 - Larger confinement volume => slower quarks.
 - Mean-Field effect.
 - Momentum Independent.
 - Static.

3. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical!

What Are SRCs?

SRCs are pairs of nucleon that are close together in the nucleus (wave functions overlap)

=> Momentum space: pairs with <u>high relative</u> <u>momentum and low c.m. momentum</u> compared to the Fermi momentum (k_F)

JLab: @ the nuclear-parton boundary

- Located in Virginia USA
- 12 GeV ~80 uA continues polarized electron beam
- Parallel operation of 4
 experimental halls
- 12 GeV experiments recently started!
- Approved program for first 8 years of 12 GeV running

Exclusive SRC studies

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

<u>Hen</u> et al., RMP (2017); <u>Hen</u> et al., Science (2014); <u>Hen</u> et al., PLB (2013); Korover, Muangma and <u>Hen</u> et al., PRL (2014); Fomin et al., PRL (2012); Subedi et al., Science (2008); Egiyan et al., PRL (2006);

EMC - SRC Correlation

<u>Hen</u> et al., RMP (2017); <u>Hen</u> et al., IJMPE (2013); <u>Hen</u> et al., PRC (2012); Weinstein, Piasetzky, Higinbotham, Gomez, <u>Hen</u>, and Shneor, PRL (2011).

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

VOLUME 53 NUMBER 4 MAY 2013

Deep in the nucleus: a puzzle revisited

Higinbotham, Miller, Hen, and Rith. CERN Cour. 53N4, 35 (2013)

HEAVY IONS

The key to finding

out if a collision

is head on

D31

Planck reveals a

almost perfec

universe

p12

IT'S A HIGGS BOSON

The new particle is identified **p21**

Nuclear corrections

M. Ubiali (RWTH Aachen), Session I, Theory Summary

15.04.2011, DIS-2011

Focusing on Neutron-Rich Nuclei

Correlation Probability: Neutrons saturate Protons grow

'Prediction': **EMC effect should** saturate for neutrons and grow for protons

Neutrons Saturate, Protons Grow

Schmookler, Duer, Schmidt, and Hen et al., submitted (2018)

Neutrons Saturate, Protons Grow

Schmookler, Duer, Schmidt, and Hen et al., submitted (2018)

 $\Delta F_2^N = F_2^{N*} - F_2^N$

 $\Delta F_2^N = F_2^{N*} - F_2^N$

Schmookler, Duer, Schmidt, and <u>Hen</u> et al., submitted (2018)

 $\Delta F_2^N = F_2^{N*} - F_2^N$

Nuclear fluctuations

Schmookler, Duer, Schmidt, and <u>Hen</u> et al., submitted (2018)

Free-Neutron Extraction

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle$$
$$-\frac{1}{3} |d\uparrow(uu)_{S=1}\rangle + \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

JLab12: Bound Nucleon Structure

JLab12: Bound Nucleon Structure

JLab12: Bound Nucleon Structure

Large Acceptance Detector (LAD@Hall-C)

The EMC-SRC World

+ Many Theory Collaborators: UW, Penn State, Huji, Gent, FIU, Perugia, ...

MIT Correlations group (Prof. O. Hen)

<u>Barak Schmookler</u>

Reynier Torres

Afroditi Papadopoulou

Efrain Segarra

Dr. Axel Schmidt

Dr. Adi Ashkenazy

Dr. Maria Patsyuk

Dr. George Laskaris

<u>Hen</u> et al., RMP (2018); Colle and <u>Hen</u> et al., PRC (2015); <u>Hen</u> et al., Science (2014); <u>Hen</u> et al., PLB (2013); Korover, Muangma and <u>Hen</u> et al., PRL (2014); <u>Hen</u> et al., IJMPE (2013); <u>Hen</u> et al., PRC (2012); <u>Hen</u> et al., PRD (2011); Weinstein, Piasetzky, Higinbotham, Gomez, <u>Hen</u>, and Shneor, PRL (2011).

+ Many works by colleagues from other groups