Nucleon spin structure measurements at JLab

A. Deur Thomas Jefferson National Accelerator Facility

A. Deur CIPANP, Palm Springs. 05/31/2018

Why do we study the nucleon spin structure? *Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_G + L_g$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

Why do we study the nucleon spin structure? *Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_G + L_q$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

*Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{\Lambda} + L_q$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

*Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_G + L_q$.

~0.15 ~0.15? ~0.2?

* Spin permits more complete study of OCD:

1970s-1980s: success of constituent quark model. Suggests S_N = $1/_2\Delta\Sigma$

EMC (1987): ΔΣ ~ 0

 \Rightarrow Nucleon spin composition is not trivial. Thus it reveals interesting information on the nucleon structure and the mechanisms of the strong force

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

*Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{\Lambda} + L_q$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

*Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{\Lambda} + L_q$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics.

*Spin degrees of freedom: additional handles to test theories. *Interesting: $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \frac{\Delta G + L_G}{\Lambda} + L_q$.

* Spin permits more complete study of QCD;

* mechanism of confinement;

* how effective degrees of freedom (hadrons) emerge from fundamental ones (quark and gluons);

* Test nucleon/nuclear structure effectives theories or models (χPT, AdS/QCD, Dyson-Schwinger Equations...)

* Precise PDFs needed for high energy or atomic physics. JLab is contributing to all these aspects

A. Deur CIPANP, Palm Springs. 05/31/2018

Lepton scattering spin structure experiments (mostly inclusive):

Experiment	Target	Analysis	W (GeV)	x_{Bj}	$Q^2 \ ({ m GeV^2})$
E80 (SLAC)	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4 to 2.7
E130 (SLAC)	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0 to 4.1
EMC (CERN)	р	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5 to 29.5
SMC (CERN)	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.02 to 57
E142 (SLAC)	$^{3}\mathrm{He}$	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1 to 5.5
E143 (SLAC)	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.45 to 9.5
E154 (SLAC)	$^{3}\mathrm{He}$	A_1, A_2	3.5 to 8.4	1.7×10^{-2} to 0.57	1.2 to 15.0
E155/x (SLAC)	p, d	A_1, A_2	3.5 to 9.0	1.5×10^{-2} to 0.75	1.2 to 34.7
HERMES (DESY)	p, ³ He	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8 to 20
E94010 (JLab)	$^{3}\mathrm{He}$	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.019 to 1.2
EG1a (JLab)	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.15 to 1.8
RSS (JLab)	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8 to 1.4
COMPASS	p, d	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1 to 62.1
(CERN) DIS					
COMPASS	p, d	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.001 to 1.
(CERN) low- Q^2					
EG1b (JLab)	p, d	A_1 .	1.0 to 3.1	2.5×10^{-2} to 1.0	0.05 to 4.2
E99-117 (JLab)	$^{3}\mathrm{He}$	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7 to 4.8
E99-107 (JLab)	$^{3}\mathrm{He}$	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.57 to 1.34
E01-012 (JLab)	³ He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2 to 3.3
E97-110 (JLab)	³ He	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.006 to 0.3
EG4 (JLab)	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.003 to 0.84
SANE (JLab)	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5 to 6.5
EG1dvcs (JLab)	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.61 to 5.8
E06-014 (JLab)	³ He	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9 to 6.9
E06-010/011	³ He	single	2.4 to 2.9	0.16 to 0.35	1.4 to 2.7
(JLab)		spin asy.			
E07-013 (JLab)	³ He	single	1.7 to 2.9	0.16 to 0.65	1.1 to 4.0
		spin asy.			
E08-027 (JLab)	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.02 to 0.4

A. Deur CIPANP, Palm Springs. 05/31/2018

Lepton scattering spin structure experiments

Inclusive lepton scattering is the tip of the iceberg.

Pol. SIDIS experiments. Colliders experiments:

Experiment	Target	Analysis	W (GeV)	x_{Bj}	$Q^2 (\text{GeV}^2)$
E80 (SLAC)	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4 to 2.7
E130 (SLAC)	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0 to 4.1
EMC (CERN)	р	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5 to 29.5
SMC (CERN)	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.02 to 57
E142 (SLAC)	³ He	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1 to 5.5
E143 (SLAC)	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.45 to 9.5
E154 (SLAC)	³ He	A_1, A_2	3.5 to 8.4	$1.7 imes 10^{-2}$ to 0.57	1.2 to 15.0
E155/x (SLAC)	p, d	A_1, A_2	3.5 to 9.0	$1.5 imes 10^{-2}$ to 0.75	1.2 to 34.7
HERMES (DESY)	p, ³ He	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8 to 20
E94010 (JLab)	³ He	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.019 to 1.2
EG1a (JLab)	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.15 to 1.8
RSS (JLab)	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8 to 1.4
COMPASS	p, d	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1 to 62.1
(CERN) DIS					
COMPASS	p, d	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.001 to 1.
(CERN) low- Q^2					
EG1b (JLab)	p, d	A_1	1.0 to 3.1	2.5×10^{-2} to 1.0	0.05 to 4.2
E99-117 (JLab)	³ He	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7 to 4.8
E99-107 (JLab)	³ He	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.57 to 1.34
E01-012 (JLab)	³ He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2 to 3.3
E97-110 (JLab)	³ He	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.006 to 0.3
EG4 (JLab)	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.003 to 0.84
SANE (JLab)	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5 to 6.5
EG1dvcs (JLab)	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.61 to 5.8
E06-014 (JLab)	³ He	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9 to 6.9
E06-010/011	³ He	single	2.4 to 2.9	0.16 to 0.35	1.4 to 2.7
(JLab)		spin asy.			
E07-013 (JLab)	³ He	single	1.7 to 2.9	0.16 to 0.65	1.1 to 4.0
		spin asy.			
E08-027 (JLab)	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.02 to 0.4

A. Deur CIPANP, Palm Springs. 05/31/2018

Thursday, May 31, 2018

Car traffic photos

Resolution

A. Deur CIPANP, Palm Springs. 05/31/2018

Energy transfer v

Jefferson Lab

A. Deur CIPANP, Palm Springs. 05/31/2018

Energy transfer v d.o.f: quarks d.o.f: quarks and flux tubes/QCD strings d.o.f: partons JLab 6 GeV d.o.f: partons d.o.f: hadrons (nucleons, pions,...) valence quarks d.o.f: constituent quarks, hadrons

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

PDFs measurements at JLab

A. Deur CIPANP, Palm Springs. 05/31/2018

PDFs measurements at JLab

Slide from J. Ethier

N. Sato et. al. Phys. Rev. D93 074005 (2016)

JAM15 Analysis – Impact of JLab Data

 $g_1(x,Q^2) = g_1^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, ...) + g_1^{\text{T3+TMC}}(D_u, D_d) + g_1^{\text{T4}}(H_{p,n})$ $g_2(x,Q^2) = g_2^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, ...) + g_2^{\text{T3+TMC}}(D_u, D_d)$

• Non-zero twist-3 quark distributions ; twist-4 consistent with zero

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

Sum Rules

Bjorken sum rule (most famous sum rule of polarized lepton scattering):

$$\int g_1^{p} g_1^{n} dx = \frac{1}{6} g_a (1 + \frac{\alpha_s(Q^2)}{\pi} + ...) + \text{non-pert. cor.}$$

$$\uparrow$$
Axial charge

A. Deur CIPANP, Palm Springs. 05/31/2018

GDH sum rule:

A. Deur CIPANP, Palm Springs. 05/31/2018

GDH sum rule:

$$\int_{v_{thr}}^{\infty} (\sigma^{1/2} - \sigma^{3/2}) \frac{dv}{v} = \frac{-2\alpha\pi^2\kappa^2}{M^2}$$

Originally derived for photo-absorption (Q²=0) Later generalized to Q²>0 $\frac{16\alpha\pi^2}{Q^2}\int_{0}^{1^2} g_1 dx = 2\alpha\pi^2S_1$ spin-dep.

A. Deur CIPANP, Palm Springs. 05/31/2018

GDH sum rule:

$$\int_{V_{thr}}^{\infty} (\sigma^{1/2} - \sigma^{3/2}) \frac{dv}{v} = \frac{-2\alpha\pi^{2}\kappa^{2}}{M^{2}}$$
Originally derived for photo-absorption (Q²=0)
Later generalized to Q²>0

$$\frac{16\alpha\pi^{2}}{Q^{2}} \int_{0}^{1^{-}} g_{1} dx = 2\alpha\pi^{2}S_{1} \underbrace{-2\alpha\pi^{2}\kappa^{2}}_{M^{2}}$$

A. Deur CIPANP, Palm Springs. 05/31/2018

GDH sum rule:

$$\int_{v_{thr}}^{\infty} (\sigma^{1/2} - \sigma^{3/2}) \frac{\mathrm{d}v}{v} = \frac{-2\alpha\pi^2\kappa^2}{M^2}$$

- Originally derived for photo-absorption ($Q^2=0$)
- Later generalized to Q²>0

$$\frac{16\alpha\pi^2}{Q^2} \int_0^{1^-} g_1 dx = 2\alpha\pi^2 S_1 \xrightarrow[Q^2 \to 0]{} \frac{-2\alpha\pi^2\kappa^2}{M^2}$$

Bjorken sum rule:

$$\int g_1^{p} g_1^{n} dx = \frac{1}{6} g_a (1 + \frac{\alpha_s(Q^2)}{\pi} + ...) + \text{non-pert. cor.}$$

GDH(proton)- $GDH(neutron) \propto Q^2 \times Bjorken sum$

A. Deur CIPANP, Palm Springs. 05/31/2018

Spin polarizabilities sum rules

Sum rules with higher moments exist, e.g. spin polarizabilities sum rules:

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

Longitudinal-Transverse polarizability:

$$\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

Or twist-3 term d₂:

$$d_2(Q^2) = \int_0^1 x^2 2g_1(x, Q^2) + 3g_2(x, Q^2) dx$$

A. Deur CIPANP, Palm Springs. 05/31/2018

Interest of the generalized GDH sum rule Sum rule valid at all Q²:

We can measure $\int g_1 dx$ at different Q² and compute the other side of the sum rule using different techniques:

⇒ Study transition from hadronic to partonic description of strong force. Test Lattice QCD, effective approaches to QCD, and models.

A. Deur CIPANP, Palm Springs. 05/31/2018

Existing data on GDH sum

Thursday, May 31, 2018

Jefferson Lab

A. Deur CIPANP, Palm Springs. 05/31/2018

Existing data (neutron)

A. Deur CIPANP, Palm Springs. 05/31/2018

GDH at low Q² in: *****JLab Hall A: E97-110, neutron(³He), E08-027 (proton) *****JLab Hall B: EG4, proton & neutron(D)

EG4 Deuteron results on $\int g_1 dx$ and polarizabilities

A. Deur CIPANP, Palm Springs. 05/31/2018

E97-110 preliminary neutron(³He) results on $\int g_1 dx$

A. Deur CIPANP, Palm Springs. 05/31/2018

EG4 preliminary proton results on $\int g_1 dx$

A. Deur CIPANP, Palm Springs. 05/31/2018

What do we learn from these measurements?

A. Deur CIPANP, Palm Springs. 05/31/2018

Test of xpt

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ^n_{LT}	d_2^n
Ji 1999	X	Χ	Α	X	-	_	-	-	-	_
Bernard 2002	X	X	Α	X	X	Α	X	X	X	X
Kao 2002	-	-	-	-	X	Α	X	X	X	X
Bernard 2012	X	Χ	Α	X	X	Α	X	X	X	-
Lensky 2014	X	Α	Α	Α	Α	X	X	X	$\sim \mathbf{A}$	Α

A. Deur CIPANP, Palm Springs. 05/31/2018

Test of xpt

No significant low-x contribution (More robust observables)

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ^n_{LT}	d_2^n
Ji 1999	X	Χ	Α	X	-	-	-	-	-	-
Bernard 2002	X	Χ	Α	X	X	Α	X	X	X	X
Kao 2002	-	-	-	-	X	Α	X	X	X	X
Bernard 2012	Χ	Χ	A	X	X	Α	X	X	X	-
Lensky 2014	X	Α	Α	Α	Α	X	X	X	$\sim \mathbf{A}$	Α

No Δ_{1232} contributions (More robust χ pt calculations)

A. Deur CIPANP, Palm Springs. 05/31/2018

"Study transition from hadronic to partonic description of strong force"

Ex. Bjorken sum data:

A. Deur CIPANP, Palm Springs. 05/31/2018

"Study transition from hadronic to partonic description of strong force"

 f_2 is large (about half of leading twist at $Q^2 = 1 \text{ GeV}^2$) in accordance to intuition. Twist-6 is small. Twist-8 is of similar size as f_2 but opposite sign. Overall, higher twist contribution small at $Q^2 = 1 \text{ GeV}^2$.

 \Rightarrow Elusive higher twists

A. Deur CIPANP, Palm Springs. 05/31/2018

PDFs measurements at JLab

Slide from J. Ethier

JAM15 Analysis – Impact of JLab Data

 $g_1(x,Q^2) = g_1^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, ...) + g_1^{\text{T3+TMC}}(D_u, D_d) + g_1^{\text{T4}}(H_{p,n})$ $g_2(x,Q^2) = g_2^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, ...) + g_2^{\text{T3+TMC}}(D_u, D_d)$

"Study transition from hadronic to partonic description of strong force"

Dedicated higher-twist measurements: Hall A E97-103, E01012, E06014, Hall C SANE

A. Deur CIPANP, Palm Springs. 05/31/2018

Is the bridge between the hadronic and partonic banks built yet?

A. Deur CIPANP, Palm Springs. 05/31/2018

•Precise mapping of the low and intermediate Q² regions.

A. Deur CIPANP, Palm Springs. 05/31/2018

•Precise mapping of the low and intermediate Q² regions.

•Improved χpt (low Q²) calculations;

A. Deur CIPANP, Palm Springs. 05/31/2018

•Precise mapping of the low and intermediate Q² regions.

•Improved <u>xpt</u> (low Q²) calculations;

Triggered improved perturbative techniques (high Q²).
Analytic and Massive perturbation theories, Schwinger-Dyson equations:

Pasechnik, Soffer, Teryaev, Phys.Rev. D 82 076007 (2010) Natale, Nucl.Phys.Proc.Suppl. 199 (2010) 178 Shirkov, Phys. Part. Nucl. Lett. 10 (2013) 186

Work motivated by JLab's Bjorken sum measurements

A. Deur CIPANP, Palm Springs. 05/31/2018

•Precise mapping of the low and intermediate Q² regions.

•Improved <u>xpt</u> (low Q²) calculations;

 Triggered improved perturbative techniques (high Q²).
 Analytic and Massive perturbation theories, Schwinger-Dyson equations: Pasechnik, Soffer, Teryaev, Phys.Rev. D 82 076007 (2010) Natale, Nucl.Phys.Proc.Suppl. 199 (2010) 178 Shirkov, Phys. Part. Nucl. Lett. 10 (2013) 186

•Jlab Bjorken sum data: AdS/QCD calculation of $\alpha_s(Q^2)$. Matching it to pQCD prediction allow to analytically determinate hadron spectrum from Λ_s

A. Deur CIPANP, Palm Springs. 05/31/2018

• : Measurements.

A. Deur CIPANP, Palm Springs. 05/31/2018

- : AdS/QCD predictions with Λ_s from PDG as (only) input.
- Slopes predicted by AdS/QCD.
- : Measurements.

The analytic determination of hadron spectrum from Λ_s has been a long-thought goal of strong interaction studies.

- : AdS/QCD predictions with Λ_s from PDG as (only) input.
- Slopes predicted by AdS/QCD.
- : Measurements.

The analytic determination of hadron spectrum from Λ_s has been a long-thought goal of strong interaction studies.

- : AdS/QCD predictions with Λ_s from PDG as (only) input.
- Slopes predicted by AdS/QCD.
- : Measurements.

The analytic determination of hadron spectrum from Λ_s has been a long-thought goal of strong interaction studies. AdS/QCD: Semi-classical approximation of QCD.)

•Precise mapping of the low and intermediate Q² regions.

•Improved <u>xpt</u> (low Q²) calculations;

Triggered improved perturbative techniques (high Q²).
Analytic and Massive perturbation theories, Schwinger-Dyson equations:

Pasechnik, Soffer, Teryaev, Phys.Rev. D 82 076007 (2010) Natale, Nucl.Phys.Proc.Suppl. 199 (2010) 178 Shirkov, Phys. Part. Nucl. Lett. 10 (2013) 186

Work motivated by JLab's Bjorken sum measurements

•Jlab Bjorken sum data: AdS/QCD calculation of $\alpha_s(Q^2)$. Matching it to pQCD prediction allow to analytically determinate hadron spectrum from Λ_s

A. Deur CIPANP, Palm Springs. 05/31/2018

Jefferson Lab

A. Deur CIPANP, Palm Springs. 05/31/2018

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

Jefferson Lab

A. Deur CIPANP, Palm Springs. 05/31/2018

4-momentum transfer Q²

A. Deur CIPANP, Palm Springs. 05/31/2018

Thank You!

A. Deur CIPANP, Palm Springs. 05/31/2018