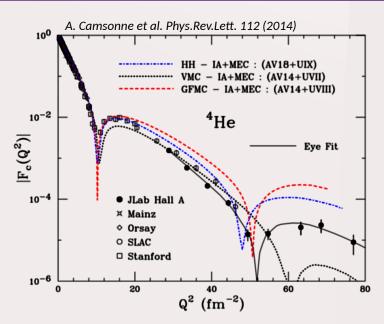
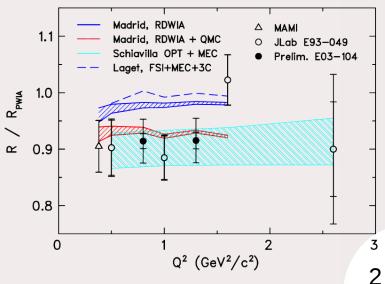
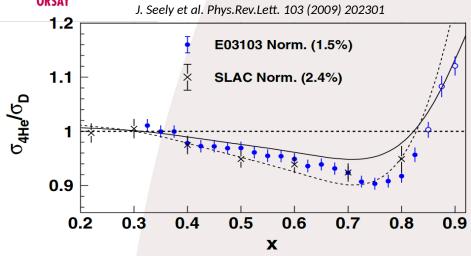


Tagging at JLab 12 and EIC

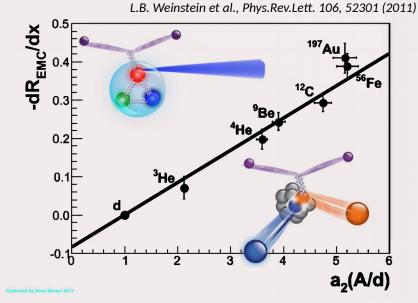

Raphaël Dupré

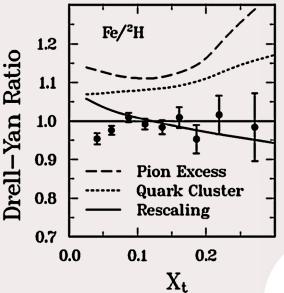

Lessons from the Past

- Nuclear Parton Distribution Functions (PDFs)
 - We did not expect a significant effect
 - Binding is only at the level of MeVs
 - Several effects were discovered: shadowing, EMC...
- Nuclear Form Factors (FFs)
 - Reveal the transverse structure of nuclei
 - Mostly interpreted in term of nucleons
- Bound nucleon FFs
 - Quasi-elastic scattering on a bound nucleon
 - Attempt to reveal the modification of nucleon structure in the nuclear medium
 - Final State Interactions (FSI) could play a significant role



S. Strauch et al. Phys.Rev.Lett. 91 (2003) 052301

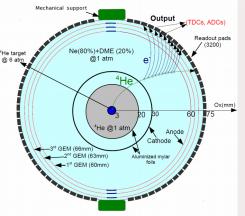

EMC: The Most Prominent Nuclear Effect


- Do nuclear pions play a role?
 - Drell-Yan experiment showed otherwise...
- Is it x or Q²-rescaling?
 - Q²-rescaling by modifying QCD in medium
 - x-rescaling due to the binding

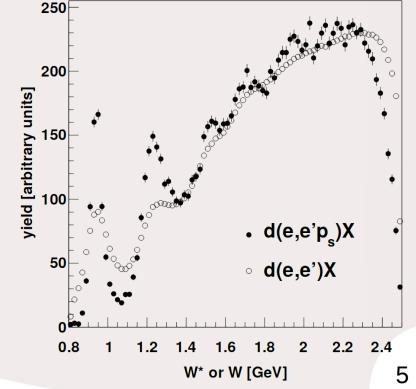
• Is there a dependence on nucleon virtuality?

- Hint from nucleon-nucleon Short Range Correlations (SRC)
- Tagging the spectator of the reaction might help with the answer

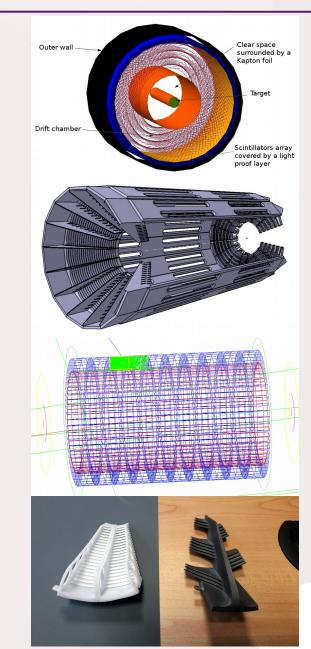
D.M. Alde et al. Phys. Rev. Lett. 64, 2479 (1990)



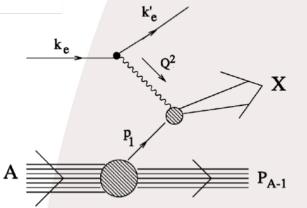
- The EMC effect remains a mystery
 - To explore possible links between the EMC effect and the intra nuclear dynamic
 - It is a semi-inclusive measurement in which we have control over the final state interactions
- Tagged measurements give access to virtuality
 - The virtuality or off-shellness of the struck nucleon is linked to its momentum in the nucleus
 - It is the way to make a direct link between the nucleus configuration and its modification
- Nuclear measurements are often plagued with FSI effects
 - Tagging of low momentum backward fragments is the safest way to suppress this problem

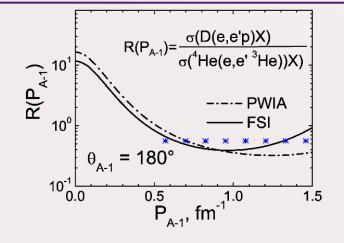

Past experience of tagging

- Spectator have been "detected" by missing energy and momentum
 - Done for a long time
 - But results were not always very good
 - Not possible for DIS

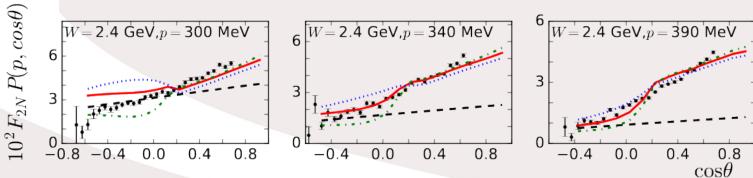


- Bonus result brought a big change
 - Directly measure the spectator
 - Best illustration in this inclusive graph
- Performed using a small radial TPC placed directly around the target
 - Similar detector used to measure low energy α for coherent helium DVCS
 - This technology is now under control but is limited in rate and luminosity




- Construction of a new faster detector for recoil measurement
 - To be placed in the center of CLAS12 (Hall-B)
 - With deuterium and helium target
 - Measure from ~100 to 300 MeV light nuclei
- Many experiments planned (tagged and not tagged)
 - Partonic Structure of Light Nuclei (E-12-17-012)
 - Tagged EMC Measurements on Light Nuclei (E-12-17-012A)
 - Spectator-Tagged Deeply Virtual Compton Scattering on Light Nuclei (E-12-17-012B)
 - And many other possible experiments (E-12-17-012C)
 - Tagged quasi-elastic
 - ..
- Detector is being designed and prototypes build
 - We expect to run the experiments sometime around 2021

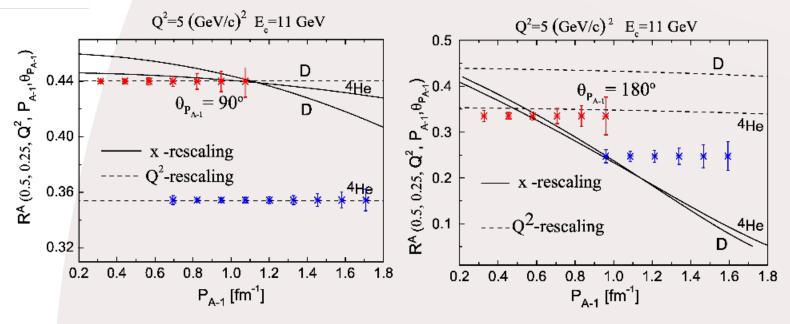
Testing the Spectator Model

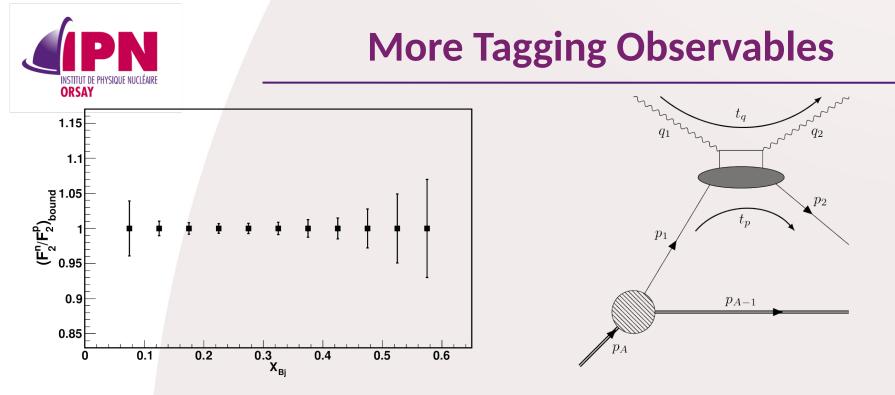


- First step is to test FSI models
 - Can be tested in large momentum and angle range with very good precision
 - This measurement will provide strong constraints for theoretical calculations

see M. Strikman, C. Weiss, arXiv:1706.02244 - W. Cosyn, M. Sargsian, arXiv:1704.06117

Comparison of Helium and Deuterium targets

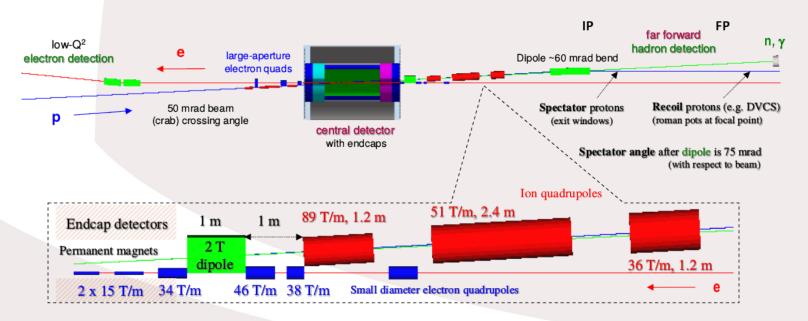

First measurement of its kind on ⁴He


C. Ciofi degli Atti, L. P. Kaptari, and S. Scopetta, Eur. Phys. J. A5, 191 (1999)

x or Q²-Rescaling ?

- The nucleon virtuality is directly linked to the spectator momentum
- Rescaling models behave differently with tagged measurements
 - It is impossible to differentiate x and Q² rescaling with inclusive measurements but they give very different signature in tagged measurements
 - Comparison of ²H to ⁴He is particularly interesting
 - It conserves the nucleus isospin symmetry
 - ⁴He is a light nuclei with a sizable EMC effect
 - The two rescaling effects are cleanly separated by the comparison between the two nuclei
 - They complement each other in spectator momentum coverage
 - C. Ciofi degli Atti et al. Eur. Phys. J., vol. A5 (1999) 191
 - C. Ciofi degli Atti et al. Phys.Rev. C76 (2007) 055206

- Many other tagged measurement and observables have been proposed
 - Most of them are accessible with ALERT
- Allows to separate the proton and neutron contributions
 - Approved only in symmetric nuclei (D, ⁴He) now, but could be extend to heavier targets (Li, B, ...)
- We can tag many other processes in nuclei
 - Quasi-elastic, DVCS ... (See W. Armstrong Talk)



At the EIC

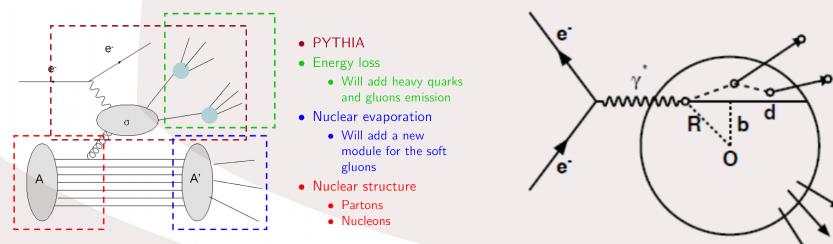
• Tagging simplifies tremendously in a collider kinematic

- Detection close to the beam line
- No minimum energy
 - Beam rigidity does the trick
- Access to neutron tagging as well
 - Zero degree calorimeter

• We can do all the measurements described before at the EIC

From tagging to nuclear break up

• When going to heavier nuclei nuclear break up gets more complicated


- Moving from two body to many body system
- Can we still understand what is going on?

• Nuclear fragments can be indicative of many things

- Evaporation and short range correlated pairs from the nuclei
 - Problem: they are not necessarily from the nucleons directly involved in the main scattering
- Centrality of the interaction
 - Problem: What do we actually call centrality here?

• Activity in JLab has started to study these questions

- Mainly for EIC, but also with interest in JLab 12 possibilities

In collaboration with: Jefferson Laboratory, Brookhaven National Laboratory, Argonne National Laboratory, Hampton University, Old Dominion University, Universidad Técnica Federico Santa María, ...

March 7, 2013

There is some data to explore this question !

- → E665 experiment at Fermi Lab
- \rightarrow µ-D (6000 events) and µ-Xe (2000 events)
- → 490 GeV beam energy

Z. Phys. C 65, 225-244 (1995)

ZEITSCHRIFT FÜR PHYSIK C © Springer-Verlag 1995

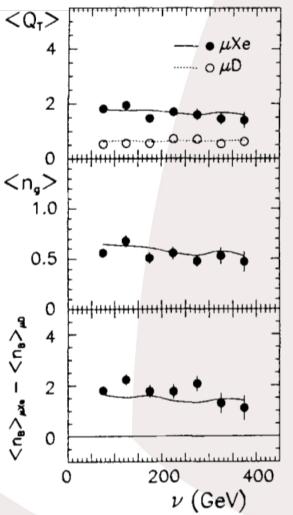
Nuclear shadowing, diffractive scattering and low momentum protons in μ Xe interactions at 490 GeV

E665 Collaboration

M.R. Adams⁶, M. Aderholz¹¹, S.Aïd^{9,a}, P.L. Anthony^{10,b}, M.D. Baker¹⁰, J. Bartlett⁴, A.A. Bhatti^{13,c}, H.M. Braun¹⁴, W. Busza¹⁰, T.J. Carroll¹¹, J.M. Conrad⁵, G. Coutrakon^{4,d}, R. Davisson¹³, I. Derado¹¹, S.K. Dhawan¹⁵, W. Dougherty¹³, T. Dreyer¹, K. Dziunikowska⁸, V. Eckardt¹¹, U. Ecker^{14,a}, M. Erdmann^{1,e}, A. Eskreys⁷, J. Figiel⁷, H.J. Gebauer¹¹, D.F. Geesaman², R. Gilman^{2,f}, M.C. Green^{2,g}, J. Haas¹, C. Halliwell⁶, J. Hanlon⁴, D. Hantke¹¹, V.W. Hughes¹⁵, H.E. Jackson², D.E. Jaffe^{6,h}, G. Jancso¹¹, D.M. Jansen^{13,i}, K. Kadija^{11,†}, S. Kaufman², R.D. Kennedy³, T. Kirk^{4,j}, H.G.E. Kobrak³, S. Krzywdzinski⁴, S. Kunori⁹, J.J. Lord¹³, H.J. Lubatti¹³, D. McLeod⁶, S. Magill^{6,j}, P. Malecki⁷, A. Manz¹¹, H. Melanson⁴, D.G. Michael^{5,k}, W. Mohr¹, H.E. Montgomery⁴, J.G. Morfin⁴, R.B. Nickerson^{5,1}, S. O'Day^{9,m}, K. Olkiewicz⁷, L. Osborne¹⁰, V. Papavassiliou^{15,j}, B. Pawlik⁷, F.M. Pipkin^{5,*}, E.J. Ramberg^{9,m}, A. Röser^{14,o}, J.J. Ryan¹⁰, C.W. Salgado⁴, A. Salvarani^{3,p}, H. Schellman¹², M. Schmitt^{5,q}, N. Schmitz¹¹, K.P. Schüler^{15,r}, H.J. Seyerlein¹¹, A. Skuja⁹, G.A. Snow⁹, S. Söldner-Rembold^{11,s}, P.H. Steinberg^{9,*}, H.E. Stier^{1,*}, P. Stopa⁷, R.A. Swanson³, R. Talaga^{9,j}, S. Tentindo-Repond^{2,t}, H.-J. Trost^{2,u}, H. Venkataramania¹⁵, M. Wilhelm¹, J. Wilkes¹³, Richard Wilson⁵, W. Wittek¹¹, S.A. Wolbers⁴, T. Zhao¹³

¹ Albert-Ludwigs-Universität Freiburg i. Br., Germany

² Argonne National Laboratory, Argonne, IL USA


³ University of California, San Diego, CA USA

⁴ Fermi National Accelerator Laboratory, Batavia, IL USA

Existing Data

March 7, 2013

➔ Kinematics

- → Low x (0.002 → 0.1)
- → Q² > 1 GeV² / W > 8 GeV
- → Hadrons measured from p > 200 MeV/c

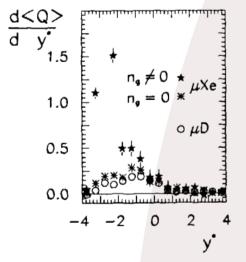

→ Grey Tracks (ng)

- Energy deposit significantly higher than MIP
- → 200

Fig. 2. Average total hadronic net charge $\langle Q_T \rangle$, average number of grey tracks $\langle n_g \rangle$ and difference of average charged backward multiplicities $\langle n_B \rangle_{\mu Xe} - \langle n_B \rangle_{\mu D}$ in μXe and μD scattering as a function of the leptonic energy transfer ν . The lines represent the predictions of the VENUS model

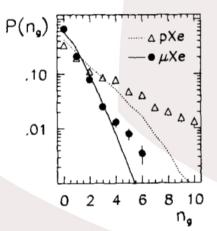
Three correlated observables :

- → Total charge
- → Backward charge
- ➔ Grey tracks


Which should we use ?

→Which can we measure best in a collider ?

Fig. 6. Average hadronic net charge as a function of the number n_g of grey tracks for μ Xe and pXe scattering, in the total rapidity region ($\langle Q_T \rangle$) and in the backward ($\langle Q_B \rangle$) and forward ($\langle Q_F \rangle$) hemispheres. The lines represent the predictions of the VENUS model


Grey Tracks

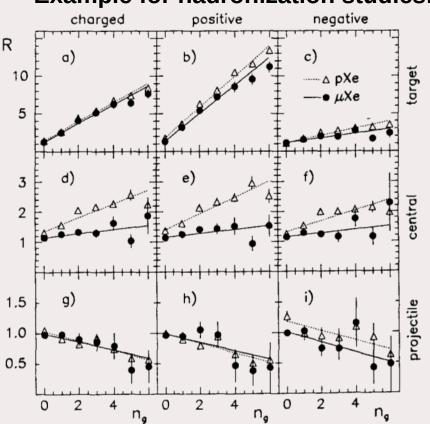
Xe similar to deuterium when no Grey tracks are observed (with 75% efficiency) !

→ We are close to the spectator case

Fig. 3. Average hadronic net charge $d\langle Q \rangle/dy^*$ as a function of y^* , in μD events and in μXe events with $(n_g \neq 0)$ and without $(n_g = 0)$ grey tracks

Number of Grey tracks to be expected

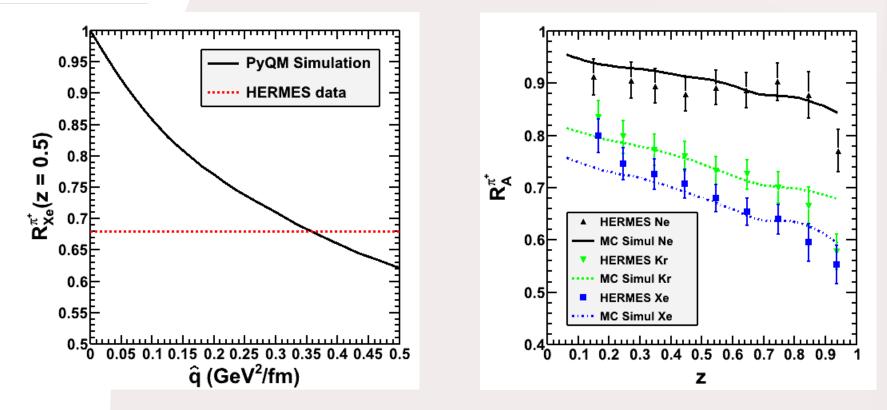
→ 0 and 1 Grey tracks represent 90% of the events → Luminosity at EIC will allow to go further


Fig. 5. Multiplicity distribution $P(n_g)$ of grey tracks for μ Xe and pXe scattering. The lines represent the predictions of the VENUS model

Enhancement of Nuclear Effects

March 7, 2013

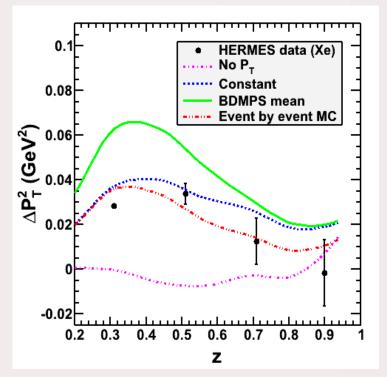
Requesting Grey tracks enhance the nuclear effects !



Example for hadronization studies:

Fig. 10. Multiplicity ratio $R(n_g)_{\mu Xe}$ (full circles) and $R(n_g)_{\mu Xe}$ (open triangles) as a function of the number n_g of grey tracks. The plots are for all charged, for positive and negative hadrons, and for three rapidity intervals (target, central, projectile). The lines are the results of straight-line fits to the data points

Attenuation for HERMES with PyQM



- Good description with qhat = 0.36 GeV²/fm
 - Single parameter model
- Not consistent with observed transverse momentum?
 - Known to be of the order of 0.03 GeV² for multi-femtometer sized nuclei

Transverse Momentum

- The transverse momentum can be implemented in many ways
 - No transverse momentum added
 - Constant addition based on q hat
 - BDMPS formula linking energy loss to transverse momentum
 - Event by event adapted from Salgado&Wiedmann
- Strong reduction from q to actual hadron transverse momentum
 - A natural z² factor
 - A strong bias from "absorbed" hadrons
 - A small bias from the lower parton energy
- This will be improved in the Beagle framework and connected to the nuclear remnants
 - The goal is to describe E665 data measuring slow nuclei out of the nucleus
 - See Mathieu's talk

Summary

- Tagging to understand the EMC effect
 - Tagging provides new observables to understand the EMC effect
 - New observables are the way to resolve the EMC conundrum
 - Tagging links the nuclear dynamic to the partonic structure
 - We have a program at JLab 12 GeV
 - It can be extended and improved at an EIC
 - Study of shadowing ?
- Moving to nuclear break up
 - Past data show that it works, but we need solid Monte-Carlo to analyze it
 - It can be useful for many processes, which need to be specifically analyzed
 - Hadronization, shadowing, EMC effect?
 - We are looking also at what can be done in JLab 12 GeV (with already approved hadronization beam time)