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The Classic Nuclei
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Nuclei described as a sum of protons and neutrons
- Bound together by two and three body forces
- Can explain exactly the light nuclei spectrum

Can be related to electron scattering measurements
- Elastic form factors and quasi-elastic scattering
- Nucleon momentum spectrum matches

All seems well and working, until...
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The Nuclear Effects
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We discovered nuclear effects at the quark level
- Shadowing, anti-shadowing and EMC effect

The EMC effect remains a mystery to this day
- Meson content induced by NN interaction

- 6,9, 12-quark clusters
* Both are excluded by Drell-Yan measurements

- Nucleon size might change - bound FF
* Difficult to prove due to FSI effects

- Q%- or x-rescaling with widely different physical meaning




Reconciling Two Points of View

So where do we stand? g
- New models still coming up %..,

- Use nucleon short range
correlations

- Apply the nuclear mean field
at quark level

How do we resolve this?




Selection of Topics

Many experiments are planned to resolve the
issue of the EMC effect

- My preference goes to the ones using new observables

My selection of topics for this talk
- Generalized parton distributions of nuclei
- Tagged processes
- Transverse momentum dependent nuclear PDFs

There are many more
- Exclusive vector meson production
- Parity violating measurements
- Spin dependent measurements
- Drell-Yan measurements




GPDs & Nuclei
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Generalizing the parton distributions
- Three dimensions: x, € and t
- Spin-0 » 1 GPD // Spin-1/2 - 4 GPDs mes

Deep virtual Compton scattering o
- The simplest access to GPDs ‘
- Allow a tomography of the proton Pr

Y*(@ Y(q-a)
In the nucleus
- Coherent and incoherent channels k ked

* Similar to elastic and quasi-elastic N (p) N (p=p+A)

Perfect probe into the EMC effect .o a1 oo
- Offer localization with the t dependence g

- Coherent DVCS gives access to non-
nucleonic degrees of freedom

- Incoherent DVCS gives access to the
modifications of the nucleon in the nuclear
medium
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CLAS Coherent DVCS
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Coherent DVCS on helium

- Measured at CLAS
* Use recoil detector to ensure exclusivity

- Shows very strong beam spin
asymmetry

Interpretation

- Very strong signal proves that we have
the nuclei as a whole

Easy direct GPD extraction
- Helium has a single GPD




CLAS Incoherent DVCS
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Gives a generalized EMC He

- Strongly suppressed in
particular in the anti- I
shadowing region —_—

- Strange behavior compared Xp
to the models
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Future of Nuclear GPDs

Short term @ JLab
- The ALERT run group

* A Low Energy Recoil Tracker

- Measure nuclear DVCS

* Coherent and tagged
incoherent

- Allows tagging
* Will help control FSI

Long term @ EIC

- Collider kinematics
* Simplify low angle detection

* Increase the phase space
available

- Polarized light nuclei

* Gives access to new
observables
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Tagging Nuclear Reactions

Tagged processes

- When we detect nuclear
fragments in coincidence

- Mix classic nuclear physics

with quark level observables A ﬂ

Why tagging?

- To control final state 250(
interaction '

- To control the initial state

How to tag?
- Done only for deuterium
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Tagging at Jefferson Lab 12 GeV

Projections for D and He-4
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The ALERT run group —_— B

- Measure charged recoils

- Tagged DIS to understand
the EMC effect

- Tagged DVCS to
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Tagging at the EIC

Kinematics of colliders makes it much simpler
- Allows detection of both proton and neutrons
- As any nucleus with a magnetic rigidity different from the beam

Allows tagging and polarized target at the same time
- Access to effective target of polarized neutrons

Gives access to many body tagging
- For large nuclei, the A-1 contribution becomes small
- Other information can be gathered
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Tagging in Many Body Systems

Centrality measurements are
now standard in A-A
- They get more and more evolved
- Also applied in p-A
* With some caveats
We will need similar
measurements at EIC

- Else we are dominated by surface
events

- Effort to create proper Monte-Carlo
tools with Beagle

- Plans to use E665 data from Fermi Lab
to calibrate

Impacts the beam line design
- This is a good time to worry about this
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Hadronization
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HERMES data
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Dominated by parton energy loss at EIC 0.08f
- Describe hadron suppression and transverse 0.07E-
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- And access to heavy quarks




Using TMDs for Hadronization
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Usual hadronization measurements use outdated
methods

- We should use the TMD framework to study semi-inclusive
DIS on nuclei

- The sin and cos moments give direct parton level sensitivity
to the transport coefficient g

Offers two independent measurements

- To be compared with the absorption and the transverse
momentum broadening




From Hadronization to Saturation
splitting recombination

4= =

Saturation is one of the key topics of EIC
- We want to look at the saturation scale in nuclei

- With BDMPS calculation, one can relate transport
coefficient and gluon saturation scale

The hadronization studies will provide an
independent result for this
- It can be measured for several nuclei

- Possibility to test the A dependence of the
saturation scale




We have a direct conflict between traditional
nuclear physics and hadron physics measurements
- We need new observables to resolve this

We have now access to nuclear GPDs
- We are able to measure nuclear DVCS
- EIC will offer the perfect ground for nuclear DVCS
* At high luminosity, moderate energies
Tagged process offer clean observables
- To help resolve the EMC effect

- To enhance nuclear effects at EIC with a centrality like
measurement

Hadronization will be key at EIC
- We need to apply the modern TMD framework
- Clean measurement of the transport coefficient
- Will give in independent access to the saturation scale
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