

Lawrence Weinstein Old Dominion University NuFact 2018 Virginia Tech, August 2018

Collaboration

- Old Dominion University
- MIT
- Jefferson Lab
- Tel Aviv U

- Michigan State
- FermiLab
- Pitt
- York University, UK

Mariana Khachatryan (ODU)

Afroditi Papdopolou (MIT)

Adi Ashkenazi (MIT)

Florian Hauenstein (ODU)

Outline

- Why electrons?
 - Nuclear Physics
- Current work
 - Jefferson Lab data analysis
 - Genie improvements
- Future plans

Why electrons?

- Known incident energy
- High intensity
- Similar interaction with nuclei
 - Single boson exchange
 - CC Weak current [vector plus axial]

•
$$j^{\pm}_{\mu} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
 - $j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$
- Similar nuclear physics

What neutrino expts want

What we get (even for Opi)

Meson Exchange Currents SRC

Short Range Correlations

Final State Interactions

How do reaction mechanisms appear in (e,e'p)?

Fixed ω = 0.2 GeV, vary q

¹²C(e,e'p) Delta Region

Baghaei, PRC 39, 177 (1989)

What are correlations?

Average Two-Nucleon Properties in the Nuclear Ground State

۲C

FSI

in SRC

Two-body currents are **not** Correlations (but everything adds coherently)

2N currents enhance correlations

L. Weinstein, NuFact18

NP A672 (2000) 285

Physics Summary

- Electron scattering:
 - Monochromatic beam
 - Vector current only
 - Can choose kinematics to minimize "uninteresting" reaction mechanisms
 - Calculate cross sections after the fact
- Neutrino interactions
 - Continuous mixed beams
 - Vector plus axial current
 - Must include all reaction mechanisms
 - MEC, IC, SRC
 - FSI (not discussed here)
 - Need good models in event generators

Jefferson Lab data

CLAS6: 1996-2015

CLAS6 coverage

16

CLAS6 Data (million events)

	1.1 GeV	2.2 GeV (e,e')	2.2 GeV (e,e'p)	4.4 GeV (e,e')	4.4 GeV (e,e'p)
3He	Not done	24	9	4	1
4He	Not done	46	17	8	3
12C	Not done	30	11	5	2
56Fe	Not done	1	0.5	0.4	0.1

E2a data only.

E2b has more 4.6 GeV 3He and 56Fe Eg2 has 5 GeV d, C, Al, Fe, and Pb

Reconstructing the initial energy

- Choose 0π events to enhanced the QE sample – Subtract "undetected pions"
- Weight by $1/\sigma_{Mott}$ to account for photon propagator
- Reconstruct the incident lepton energy:

$$-E_{QE} = \frac{2M_N\epsilon + 2M_NE_l - m_l^2}{2(M_N - E_l + k_l\cos\theta_l)}$$

- ϵ : nucleon separation energy, M_N nucleon mass
- $\{m_l, E_l, k_l, \theta_l\}$ scattered lepton mass, energy, momentum and angle
- broadened by nucleon fermi motion

$$-E_{cal} = E_e + T_p + \epsilon$$
 [for (e,e'p)]

Background Subtraction

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions

Background Subtraction

Non-QE interactions lead to multi hadron final states

Gaps in CLAS acceptance will make them look like (e,e'p) events

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. Do the same for 2p, 3p, 2p+ π etc.

Non-QE interactions lead to multi hadron final states

Gaps in CLAS acceptance will make them look like (e,e'p) events

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. Do the same for 2p, 3p, 2p+ π etc.

Even Opi events have a LOT of non-QE events Much bigger in Fe than ⁴He Larger at 4.4 GeV than 2.2 GeV

Perpendicular momentum (Data)

L. Weinstein, NuFact18

$P_{\rm miss}^{\perp}$ slices

- 1. Worse peak resolution for $\rm E_{QE}$
- 2. E_{Reconstructed} worse for heavier targets
- 3. Large $P_{\text{miss}}^{\perp} \rightarrow \text{bad}$ reconstruction

We're Also Improving Genie

- 1. Corrected expression for Mott cross section in QE
- 2. MEC/2p2h
 - 1. Added boost back to lab frame
 - 2. Corrected mass for cluster of particles
 - 3. Corrected Form Factors
- 3. Resonance
 - 1. Replaced old calculation with GSL Minimizer (now gives correct peak location)
 - 2. Switched to Berger-Seghal model
 - 3. Used corrected coupling constant for EM interactions
- 4. Nucleon momentum distributions
 - 1. Switched to Local Fermi Gas Model

Beginning work on NuWro and GiBUU.

Consulting with the relevant experts on each code.

Data-Genie Comparisons

Data-Genie Comparisons

28

Data-Genie Comparisons C(e,e'p) 2.26 GeV, Q² > 0.5 GeV², W < 2 GeV

Significant differences at large p_{\perp} , none describe the data well 29

Peaks in same location

L. Weinstein, NuFact18

Data-Genie Comparisons

E_{beam} **Reconstruction**

3. Comparing Data to Genie: E_{beam} Reconstruction

Fe	e ⁻ Data	ν GENIE
2.2 GeV	26%	62%
4.4 GeV	14%	62%

Fraction of Fe(e, e'p) and Fe($v, \mu^- p$) events with E_{Cal} within 5% of E_{beam}

Apply CLAS data to DUNE Oscillation

- Proof of principle to show potential impact
- Threw events with vA Genie
 - Reconstructed with vA Neut or eA data
- Compared E_{rec} for eA to E_{rec} for vA
- Used 2.26 GeV *eA* E_{rec} for all incident energies

(Chris Marshall, LBNL)

CLAS12

- forward detector (8 40°)
 - Toroidal magnetic field
 - $-\frac{\delta p}{p} \sim 0.5 1\%$
 - Neutrons:
 - 50% effi for p > 1 GeV/c
 - $\frac{\delta p}{p} \sim 10-15\%$ for 1 GeV/c
- Hermetic central detector (40 – 135°)
 - 5 T solenoidal field
 - Neutron effi ~ 10—15%
 - Neutron $\frac{\delta p}{p}$: 60 ps @ 0.3 m
- 45 beam days approved with an A rating for
 - 1.1, 2.2, 4.4, and 6.6 GeV beam energies
 - d, He, C, O, Ar, and Sn targets

- We provide event yields and detector acceptance maps
 - Many beam energies
 - Many targets
 - Many event topologies
- Let experts use these to tune generators and understand energy reconstruction
- Can we use 40Ca or do we need 40Ar?
- What do you want to see??

- Nuclear physics is complicated!
- Electron scattering can contribute dramatically to neutrino experiments
 - Similar physics
 - Lots of data available
 - Lots more to come
- We need guidance from the neutrino community

Backup slides

Mott weighting

Similarity of electron and neutrino GENIE 2.2 GeV Fe, zero-pion. QE

Extra Transverse even at the QE peak

¹²C(*e,e'p*) *q*=0.4 GeV and *x*=1

extra transverse strength starting at the 2N KO threshold

Ulmer et al, PRL <u>59</u>, 2259 (1987);₄₃ Dutta et al, PRC <u>61</u>, 061602 (2000)

The ideal electron experiment

- Identify contributing reaction mechanisms over a wide kinematic range
 - Full acceptance for all charged hadrons
 - High efficiency for neutrals
 - Neutrons
 - π^0
- Lots of targets
 - Neutrino detector materials: C, O, Ar, Fe
 - More nuclei to constrain models
- Enough beam energies to cover the full range of interesting momentum transfers

Why momentum transfer and not beam energy?

- The scattering cross section depends primarily on energy and momentum transfer
- For (e,e'p):

 $-\frac{d^{6}\sigma}{d\Omega_{e}d\Omega_{p}dE_{p}d\omega} = \sigma_{Mott} [v_{L}R_{L} + v_{T}R_{T} + v_{LT}R_{LT}cos\phi_{pq} + v_{TT}R_{TT}cos2\phi_{pq}]$

- Kinematic factors v_i depend on $\{Q^2, \omega, \theta_e\}$
- Response functions R_i depend on $\{Q^2, \omega, \theta_{pq}\}$
- Only beam energy dependence comes from θ_e
- Need to account for boson propagator $\propto \frac{1}{\rho^2 + M^2}$

$$- \propto \frac{1}{M^2}$$
 for W exchange
 $- \propto \frac{1}{Q^2}$ for photon exchange (Mott Cross section)

How to use electron data for neutrino measurements

- Tune vector models in generators to data
 - Span a wide enough range in Q² and A to constrain models well
 - Constrain final state interaction (outgoing particle rescattering) models
- Tune remaining model elements to near detector data
- Guide event selection for "enhanced QE" samples, "Res" samples, etc

Standard Candle \rightarrow Inclusive Analysis on ^{12}C

