

Results from the JLab CLAS EG4 experiment

M. Ripani INFN Genova

Nucleon Spin Structure at Low Q: A Hyperfine View, July 2-6, 2018

The EG4 experiment Group

Main goal: measurement of the generalized Gerasimov-Drell-Hearn (GDH) sum for the proton and deuteron at low Q^2 .

E03-006 (NH₃): Spokespeople: M. R., M. Battaglieri, A.Deur, R. de Vita Students: H. Kang (Seoul U.), K. Kovacs⁺ (UVa)

E06-017 (ND₃) Spokespeople: A.Deur, G. Dodge, M. R., K. Slifer Students: K. Adhikari⁺ (ODU)

EG4 ran from Feb. to May 2006.

Main goal: inclusive analyses. Also, exclusive analysis by X. Zheng

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

✦ Graduated.

The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

•Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.

•Measure the global property (e.g. spin polarizability sum rules)

The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
Measure the global property (e.g. spin polarizability sum rules)

<u>GDH sum rule</u>: derived for real photons (Q²=0): $\int_{v_{thr}}^{\infty} \frac{\sigma_A(v) - \sigma_P(v)}{v} dv = \frac{-4\pi^2 S \alpha \kappa_+^2}{M^2}$ target anomalous magnetic moment target mass target spin photoprod. cross section with photon spin anti-parallel to S

The GDH and Generalized GDH Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
Measure the global property (e.g. spin polarizability sum rules)

<u>GDH sum rule</u>: derived for real photons (Q²=0): $\int_{v_{thr}}^{\infty} \frac{\sigma_A(v) - \sigma_P(v)}{v} dv = \frac{-4\pi^2 S \alpha \kappa^2}{M^2}$ target anomalous photoprod. cross section with photon spin anti-parallel to S

<u>Generalized GDH sum rule</u>: valid for any Q². Recover the original GDH sum rule at Q²=0

Spin Polarizabilities Sum Rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
Measure the global property (e.g. spin polarizability sum rules)

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2 M^2}{\pi Q^6} \int x^2 \left(g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right) dx = \int x^2 A_1 F_1 dx$$

 $g_2(v,Q^2)$: second spin structure function (mostly a perp. target pol. observable)

Contribution suppressed in γ_0

Longitudinal-transverse spin polarizability:

$$\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

Waiting for g_2 data

Not further discussed in this presentation

Previous data: high to intermediate Q^2

Before EG4 run (2006):

Precise mapping of intermediate Q^2 region for p, n and d. pQCD, models and data agree. Not so clear for χpT .

Test of xpt

EG4 setup

•Q²>0: electron beam (polarized). Energies: 3.0, 2.3, 2.0, 1.3 & 1.0 GeV
•g₁^{p,n}: ~longitudinally polarized target

•g1 from pol. cross-section differences (not asymmetries, as in EG1, EG1dvcs) Advantage: dilution from unpol. target material cancels out

- •Small angles: outbending torus field, new Møller shield; target at -1m
- •Cross-section \Rightarrow controlled (i.e high) efficiency at small angles.
- \rightarrow New Cherenkov detector (INFN). Installed in sector 6. Cover down to 6°

EG1: Largest possible kinematic coverage -> inbending and outbending configuration, E = 1.6...5.8 GeV

EG4: Focus on low Q² => lower beam energies, new Cherenkov for optimal acceptance in outbending configuration, θ_e as small as 6 degrees

... and EG1-DVCS: Highest statistics at large x, Q^2

EG4 kinematic coverage

1.52 GeV proton only for commissioning purposes

•g1 from pol. cross-section differences (not asymmetries, as in EG1, EG1dvcs) Advantage: dilution from unpol. target material cancels out

$$\frac{\Delta d\sigma^{theor}}{d\Omega dE'} \equiv \frac{d\sigma^{\rightarrow\Rightarrow}}{d\Omega dE'} - \frac{d\sigma^{\leftarrow\Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2 {E'}^2}{ME\nu Q^2} \left[(E - E'\cos\vartheta)g_1(x,Q^2) - 2Mxg_2(x,Q^2) \right]$$

- Small $Q^2 \rightarrow$ small x $\rightarrow g_2$ contribution suppressed
- Actual experimental quantity measured:

 $\Delta N^{exp}(\Delta E', \Delta \Omega) \equiv N^{\to \Rightarrow}(\Delta E', \Delta \Omega) - N^{\leftarrow \Rightarrow}(\Delta E', \Delta \Omega) = P_f \mathscr{L} P_b P_T \frac{\Delta d\sigma^{theor}}{d\Omega dE'} \Delta E' \Delta \Omega \epsilon_{det}$ (*)

where

- P_f = packing fraction (how much target cell filling with ammonia beads)
- \mathscr{L} = integrated luminosity (how many electrons on target times nominal target surface thickness) (*)
- $P_b = beam polarization (85 \pm 2\%)$
- $P_b = target polarization (59 to 71 \% for H, 30 to 45 \% for D)$
- ε_{det} = detector acceptance/efficiency

(*) there is a small correction due to the beam charge asymmetry, not shown here

Sum rule integrals Deuteron

$$\int_{0}^{x_{th}} \dots \to \int_{0.001}^{x_{min}} Model + \int_{x_{min}}^{x(W=1.15 \text{ GeV})} data + \int_{x(W=1.15 \text{ GeV})}^{x(W=1.07 \text{ GeV})} Model$$

For the lowest Q² bin, 0.020 GeV², $x_{min} = 0.0073$

For the largest Q² bin considered for integration, 0.592 GeV², $x_{min} = 0.280$

In the 3rd integral, the model is used rather than data to avoid quasielastic scattering and radiative tail contaminations

Proton

$$\int_{0}^{x_{th}} \dots \to \int_{0.001}^{x_{min}} Model + \int_{x_{min}}^{x(W=1.08 \, GeV)} data$$

g₁^d from EG4 polarized cross-section difference

K. Adhikari, S. Kuhn

g₁^d from EG4 polarized cross-section difference

K. Adhikari, S. Kuhn

 $\Gamma_1^d = \int g_1^d(x, Q^2) dx$

K. Adhikari, S. Kuhn

K.P. Adhikari et al. (CLAS Collaboration). PRL 120, 062501 (2018)

•Lowest Q^2 decreased by factor of ~2.5

Much improved precision

 \Rightarrow Clean test of χ pt

•Small unmeasured low-x and large-x contributions

$\Gamma_1^d = \int g_1^d(x, Q^2) dx$

K. Adhikari, S. Kuhn

K.P. Adhikari et al. (CLAS Collaboration). PRL 120, 062501 (2018)

Generalized GDH sum $\overline{I}_{TT} = \int \frac{\sigma_A(v) - \sigma_P(v)}{v} dv$

•Maid model disagrees at low $Q^2=0$.

Generalized GDH sum $\overline{I}_{TT} = \int \frac{\sigma_A(v) - \sigma_P(v)}{v} dv$

Higher moment γ_0

•Incoherent sum of p and n $\rightarrow \chi$ PT results of Lensky et al. disagree with data. •Bernard et al. χ PT calculation agree for lowest Q² points only. •Maid model disagrees at low Q².

Conclusion from deuteron data

No χPT single method describes well both Γ_1 , I_{TT} , and γ_0 , except at the lowest Q^2 .

A satisfactory theoretical description of spin observables at low Q² remains challenging.

g₁^p from EG4 polarized cross-section difference

g₁^p from EG4 polarized cross-section difference

Currently revisiting analysis with same technique as deuteron (X. Zheng with essential support from L. El Fassi and J. Zhang)

Comparison between data and simulations in new approach

Data Simulations

EG4: Spin Asymmetry A_{LL} Results on p(e,e' π^+)n

Summary and perspectives

- •EG4: Low Q^2 measurement using polarized e⁻ on polarized p and d, over a large x-range in order to study spin sum rules.
- •New detector necessary to reach these kinematics.
- •Main goal: unambiguous test of χPT.
- •Doubly polarized inclusive cross-section analysis.
- •Exclusive data for π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis). X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

•Inclusive analysis on d recently published K.P. Adhikari et al. (CLAS Collaboration), PRL 120, 062501 (2018)

•Data on Γ_1 , \overline{I}_{TT} , and γ_0 for the deuteron shows that χPT has mixed success, depending on the χPT method and observable.

- •Original GDH sum rule ($Q^2=0$) checked on d and n.
- •First result of larger JLab program to measure benchmark spin observables for χPT \Rightarrow More low Q² data to come:
 - • g_1 , Γ_1 , I_{TT} , and γ_0 for the proton (CLAS EG4).
 - •g₁, g₂, Γ_1 , Γ_2 , I_{TT}, γ_0 and δ_{LT} for the neutron and ³He (Hall A E97110).
 - • g_2 , g_1 , Γ_2 , Γ_1 , I_{TT} , δ_{LT} and γ_0 for the proton (Hall A E08027).