

Generalized Parton Distributions with Jefferson Lab @ 12 GeV

Charles Hyde Old Dominion University Norfolk Virginia, USA

12 GeV Upgrade Complete!

- Simultaneous 4-Hall Operation
- Full Linac design power = 300µA•2GV = 600 KWatt

Deep Virtual Exclusive Scattering

- Fully exclusive final states
 - $e p \rightarrow e p \gamma$, $ep \rightarrow e N$ meson
 - e d \rightarrow e pn γ , etc.
- Nuclei
 - e d \rightarrow e d γ
 - $e^4He \rightarrow e^4He \gamma$
- Polarized electrons, longitudinally polarized p, d

- Transverse polarized targets:
 - HD_{ice} in CLAS12
 - (test beam studies in preparation)
 - ³He with SOLiD (Hall A),
 - NH₃, ND₃ with TCS (Hall C)
- Time-like Compton Scattering (TCS)

•
$$\gamma p \rightarrow l^+ l^- p$$

NH₃DNP-CLAS12

Partonic Structure of the Nucleon

Studying matter as it is illuminated by a light-front

- DIS: H(e,e')X
 - Longitudinal (light-cone) Momentum distributions
- Elastic Electro-Weak Form Factors: H(e,e')p...
 - Fourier Transform of spatial impact-parameter distributions
 - 2-D formalism fully compatible with Q.M. and Relativity
- Generalized Parton Distributions Deeply Virtual Exclusive Scattering
 - $eN \rightarrow eN\gamma$, $eN \rightarrow eN(\pi, \rho, \phi)$, etc
 - Correlations of longitudinal momentum fraction with transverse spatial position

Bethe-Heitler (BH) and Virtual Compton Scattering (VCS) $e p \rightarrow e p \gamma$

- BH-VCS interference
 - Access to VCS amplitude, linear in GPDs

4/19/2018

JLab-GPDs-C.Hyde

QCD Factorization of DVCS (Co-Linear)

Symmetrized Bjorken variable:

JLab-GPDs-C.Hyde

Transversely polarized virtual photons dominate to O(1/Q)

• SCHC:

CLAS: $H(\vec{e}, e'p\gamma)$

• K.Jo, *et al.* [CLAS], PRL **115** (2015)

• Constrained Fits to Re, Im [H(x,t)]

- $Im[H(x,t)] \sim e^{b(x)t}$
 - \rightarrow b decreases as x_B increases
 - ➔ Proton is shrinking!

4/19/2018

CLAS: ${}^{4}\text{He}(\vec{e},e'\gamma\alpha)$

M.Hattawy et al., PRL 119 (2017)

- Radial TPC for recoil $\boldsymbol{\alpha}$
 - 250mm z \otimes 160 mm ϕ
- Only one GPD: $H(x,\xi,t)$
 - Compton Form Factor $\mathcal{H}(\xi,t)$

 $\boldsymbol{A}_{\boldsymbol{L}\boldsymbol{U}}(\boldsymbol{\phi}) = \frac{\alpha_0(\boldsymbol{\phi})\Im(\mathcal{H}_A)}{\alpha_1(\boldsymbol{\phi}) + \alpha_2(\boldsymbol{\phi})\Re(\mathcal{H}_A) + \alpha_3(\boldsymbol{\phi})[\Re(\mathcal{H}_A)^2 + \Im(\mathcal{H}_A)^2]}.$

4/19/2018

CLAS: Longitudinally Polarized Protons **Target-Spin Asymmetries**

- Spatial distribution of quark helicity
- On to to 11 GeV!

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 $-t (GeV/c)^2$

AUL

CLAS12 First Physics Run: Jan 11-May 7 2018

4 hours @ 10.6 GeV Candidate Exclusive events H(e,e'p...)

4/19/2018

JLab-GPDs-C.Hyde

Hall A: $H(e,e'\gamma)$ $x_B = 0.36, Q^2 = 1.5, 1.75, 2.0 \text{ GeV}^2$ M.Defurne *et al., "A Glimpse of Gluons",* Nat. Comm.**8** (2017)

♦ Q² = 1.75

- ★ E_e = 4.455 (left), 5.55 (right)
 GeV
- $\mathbf{A}^{4} \sigma / [d\mathbf{Q}^{2} d\mathbf{x}_{B} dt d\phi_{\gamma\gamma}] \\ \Delta^{4} \sigma = d^{4} \sigma(h=+) d^{4} \sigma(-)$
- ✦ Solid Grey Line = KM2015
- Dashed: Leading Twist / Leading Order (LT/LO) fit with V. Braun Kinematic Twist-4 constrained by LO/LT:
 - ◆ Global fit at each –t : $3 ⊗ Q^2 & 2 ⊗ E_e$

• Poor χ^2

Two Fit-Scenarios [Using V. Braun et al, PRD **89**, 074022 (2014)]

 LO+ NLO (gluon transversity) + Kinematic Twist-4

`Global' Fit: Q²=1.5, 1.75, 2.0 GeV² & E_e = 4.45, 5.55 GeV

Displayed at $Q^2 = 1.75$ for -t = 0.030 GeV²

Identical fit (blue1) for either: Twist-3 or NLO (gluon) scenarios. Both fits have Kinematic Twist-4 contribution constrained from Twist-2 component of fit

E07-007 `Global' Fit Separations of Re,Im[DVCS⁺BH], |DVCS|²

 $-t = 0.030 \text{ GeV}^2$ (of three *t*-bins): Displayed at Q² = 1.75

Hall A DVCS, Deep π^0

Hall A: Deep π^0 , $E_e = 7.4$ GeV

• H(e,e'γγ)X

$$, x_B = 0.36$$

Preliminary results: Mongi Dlamini (Ohio U.)

Leading Order (LO) QCD Factorization of DVES

Pseudo-Scalars

- JLab Hall A
 - L/T separation for H(e,e' π^0)p and D(e,e' π^0)pn
 - $\sigma_T >> \sigma_L$
- JLab CLAS
 - $\sigma_T + \epsilon \sigma_L$ for H(e,e' p π^0), H(e,e' p η)
 - $\sigma_T + \epsilon \sigma_L >>$ naïve colinear factorization.
- Twist-3 helicity flip meson Distribution Amplitude enhanced by χ SB \rightarrow coupling to nucleon transversity GPD: $\langle \pi(q') | \overline{\psi} \sigma^{+-} \psi | 0 \rangle \otimes \mathcal{H}_T$
 - S. Goloskokov, P. Kroll, Eur. Phys. J. A 47, 112 (2011).
 - S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D 79, 054014 (2009).

DVMP: π^0 , η @ 6 GeV

Solid Curves: S. Goloskokov and P. Kroll, Eur. Phys. J. A **47**, 112 (2011).

Dashed: G. R. Goldstein, J. O. Hernandez, and S. Liuti, Phys. Rev. D **84**, 034007 (2011).

[Flavor Spin]-Structure Separation

- Hall A: $D(e,e'\pi^0)pn-H(e,e'\pi^0)p$,
 - M.Mazouz et al PRL **118** (2017)
- CLAS: $H(e,e'\pi^0)p \pm H(e,e'\eta)p$
 - I. Bedlinskiy PRC 95 (2017)
 - V. Kubarovsky SPIN2014

$$\frac{d\sigma_T}{dt} = \Lambda \Big[(1 - \xi^2) |\langle H_T \rangle|^2 - \frac{t'}{8M^2} |\langle \bar{E}_T \rangle|^2 \Big],$$
$$\frac{d\sigma_{TT}}{dt} = \Lambda \frac{t'}{8M^2} |\langle \bar{E}_T \rangle|^2.$$

$$\pi^{\mathbf{0}} \quad |\langle H_T^{p,n} \rangle|^2 = \frac{1}{2} \left| \frac{2}{3} \langle H_T^{u,d} \rangle + \frac{1}{3} \langle H_T^{d,u} \rangle \right|^2,$$
$$\eta \quad |\langle H_T^{p,n} \rangle|^2 = \frac{1}{2} \left| \frac{2}{3} \langle H_T^{u,d} \rangle - \frac{1}{3} \langle H_T^{d,u} \rangle \right|^2,$$

CLAS

$$Q^2 = 2.2 \text{GeV}^2$$

 $x_{Bj} = 0.27$
Assume $\sigma_T \gg \sigma_L$

Hall A

4/19/2018

Vector mesons

- ϕ : JLab12 kinematics:
 - Expect Gluon GPDs + ≤20% gluon⊗strange
- J/Psi: seen in Hall D.
 - Threshold production \rightarrow large $-t_{\min}$.
 - CLAS12 search for LHCb J/ $\psi \otimes p$ resonances
- ρ, ω
 - Slow approach to longitudinal
 - dominance in HERA data
 - Unexplained enhancement in ρproduction at low W² in CLAS data.
 - Helicity violating amplitudes → Transversity GPDs à la pseudo-scalars?
 - ω : strong violation of SCHC

ZEUS

γ́ρ→ρ⁰ρ

JLab-GPDs-C.Hyde

21

Deep rho, Deep phi

What about the Ji Sum-Rule?

- $\lim_{t\to 0} \int x dx [H_f(x,\xi,t)+E_f(x,\xi,t)] = 2 J_f$
 - Skewing effects, Extracting *E* ?
 - *u,d* flavor separations from proton, neutron
 - $E^{(n)}$ dominates unpolarized $n(e,e'\gamma)n$
 - E^(p) requires transversely polarized targets
 - HD_{ice} for CLAS12
 - NH₃, ³He with SOLiD or TCS?

Example Regge-Inspired Model of GPDs 0.20 $|t| F_1^d$ [GeV²] $|t| F_1^u$ [GeV²]

0.4

0.3

0.2

M.Diehl, ... EPJC 73 (2013)

 $H_f(x, 0, \Delta^2) = q_f(x) \exp[\Delta^2 B_{1f}(x)]$ $E_f(x, 0, \Delta^2) = e_f(x) exp[\Delta^2 B_{2f}(x)]$

- $q_f(x)$: ABM2011 $e_f(x) = \kappa_f N_f x^{-\alpha_f} (1-x)^{-\beta_f} (1-\gamma_f x^{1/2})$
- $B_{nf}(x) = \alpha_f' (1-x)^3 log(1/x) + A_{nf} x (1-x)^2$ $+ B_{nf}(1-x)^{3}$

 $\sqrt{-t}$ [GeV]

0.15

0.10

 $h(\alpha,\beta) = N_1 \frac{\left| (1-|\beta|)^2 - \alpha^2 \right|}{(1-|\beta|)^3}$

Output Compton Form Factors: $\xi = x_{Bj}/(2-x_{Bj})$ $Im[\mathscr{H}_{f}(\xi,\Delta^{2})] = \pi [H_{f}(\xi,\xi,\Delta^{2}) - H_{f}(-\xi,\xi,\Delta^{2})]$ $\xi \operatorname{Im} \left[H_f(\xi, \Delta^2) \right] = \pi \int_0^{x_{Bj}} d\beta \left[q_f(\beta) + \overline{q}_f(\beta) \right] \left[h_f(\alpha, \beta) \right]_{\alpha = 1 - \beta/\xi} e^{\Delta^2 B_{1f}(\beta)}$

• Profile functions $h(\alpha,\beta)$ arbitrary (symmetric in α,β): 4/19/2018 JLab-GPDs-C.Hyde

2.0

2.5

2.5

 $\sqrt{-t}$ [GeV]

3.0

3.0

Constraints on Ji Sum Rule

- $H_f(x,0,t)$ essentially known from fits to $F_{1f}(-t) \otimes q_f(x)$
 - Measure $H_f(x,x,t) \rightarrow$ Determines DD Profile function
 - JLab 12 \rightarrow higher *x*, Q^2 range
- $E_f(x,0,t)$ constrained from $F_{2f}(-t)$ and assumption $e_f(x)$ does not change sign.
 - Test this assumption
 - x≈0.1 COMPASS 2020
 - x≈0.4 Jlab12
 - Lattice QCD
- My prediction: In 10 years, we will be confident in value of $J_{u,d}$

Backup Slides

Deep ω

- L. Morand [CLAS] EPJ A **24**, (2005) 445.
 - $r_{0,0}^{0.04} \approx 0.5 \rightarrow \sigma_T \sim \sigma_L$
 - $r_{1,-1}^{04} \approx -0.2 \rightarrow SCHC$
 - $\gamma^* \to \omega_{L}$
 - $\gamma^* \rightarrow \omega_T$
 - $\gamma^*(\pm) \rightarrow \omega(\mp)$

Fig. 18. (Color online) r_{ij}^{α} extracted with the method of moments for 8 bins in $(Q^2, x_{\rm B})$ and for $t' < 0.5 \,{\rm GeV}^2$. The location and size of each graph correspond to the $(Q^2, x_{\rm B})$ range over which the data is integrated, but the scale is the same on all graphs. The abscissa on each graph corresponds to the following list of matrix elements: r_{00}^{04} , ${\rm Rer}_{10}^{04}$, r_{1-1}^{04} , r_{10}^{04} , r_{1-1}^{11} , ${\rm Imr}_{10}^2$, ${\rm Imr}_{1-1}^2$, r_{50}^5 , r_{51}^5 , ${\rm Rer}_{10}^{04}$, r_{1-1}^{04} , r_{10}^{16} , r_{1-1}^{16} . The filled symbols (red online) indicate those matrix elements which are zero if SCHC applies. The 16th entry (empty circle, blue online, in some cases off scale) is the combination of r_{ij}^{α} given by eq. (11). Error bars include systematic uncertainties added in quadrature.

DVCS/DVMP with CLAS at 12 GeV

- 80 days on H_2 target at ~10³⁵ /cm²/s
 - DVCS/Vector Meson production/ TCS with low-Q² tagger concurrent
- 120 days on Longitudinally Polarized NH₃ target
 - Total Luminosity 10³⁵ /cm²/s, dilution factor ~1/10
- 90 days: D(e,e'γn)p_s
- ⁴He(e,e' $\gamma \alpha$) with upgraded BoNUS detector
 - GEM based radial TPC for recoil $\alpha\text{-detection}$
- Ambitions/options for Transversely polarized targets
 - NH₃ target has 5 T transverse field
 - need to shield detectors from "sheet of flame"
 - Reduce (Luminosity)•(Acceptance) by factor of 10 (my guess)
 - HD-ice target: Transversely polarized H
 - 110 Days approved
 - Luminosity•(polarization)² not yet known

A_{LU} projections for JLab@12GeV

A_{LU} projections for protons

4/19/2018

JLab-GPDs-C.Hyde

A_{UL} projections for protons

Exclusive $\rho^0 \rightarrow \pi \pi L/T$ separation from SCHC

Exclusive ϕ : **CLAS12** experiment

1

0

0.2 0.4 0.6

0.8 1

t_{min}-t

1.2 1.4

1.6 1.8

GeV²

- *t*-dependence of 6 GeV ϕ data consistent with gluonic radius measured at high energies Extrapolation of HERA, FNAL J/ψ results
- CLAS12: Test reaction mechanism and harden GPD-based description

When does *t*-slope become independent of Q^2 ?

How does W-dependence change with Q^2 ?

L/T ratio from vector meson decay and $s\mathchar`-\mbox{channel}$ helicity conservation

• CLAS12: Extract *t*-dependence of gluon GPD at x = 0.2 - 0.5

Obtained from relative *t*-dependence of $d\sigma_L/dt$

First accurate gluonic image of nucleon at large x!

Time-Like Compton Scattering

- Lepton Charge Conjugation:
 - |TCS|², |BH|² even
 - Interference term is odd:
 - *e*⁺*e*[−] decay distribution measures Re[TCS^{*}BH]

CLAS 12 TCS

 Ratio of e⁺e⁻ → Hadrons / di-muons versus e⁺e⁻ mass

Statistical uncertainties for 100 days at a luminosity of 10³⁵ cm⁻²s⁻¹

4/19/2018

JLab-GPDs-C.Hyde

- Threshold region poorly measured
- CLAS 12:
 - Full *t*-distrbution
 - fine bins in s at threshold
- SoLID,
 - Electroproduction
 - Polarized Target

Statistical uncertainties for 100 days at a luminosity of 10³⁵ cm⁻²s⁻¹ Open squares: s = 21.05 - 21.55 GeV² Filled triangles: s = 19.05 - 19.55 GeV^a 10Filled squares: s = 17.55 - 18.05 GeV⁸ 10 $d \sigma / dt n h / GeV^2$ o (nb) 10 10 10 10 10 10.5 11 9.5 11.5 12 0.53.5 1.5E, (GeV) -t (GeV²)

36

Impact of Hall A+C DVCS Kinematicss

- Multiple Energy settings at key (x_B, Q^2) settings.
- Expanded reach in x_B and Q^2 .
- Beam time adjusted for
 ≈equal statistics in each bin

Projections DVCS

DVCS: Energy separation setting ($Q^2 = 3.4 \text{ GeV}^2$, $x_B = 0.5$)

14 / 22

Projections DVCS

DVCS: high- Q^2 and low- x_B extension

 $Q^2 = 10 \text{ GeV}^2$, $x_B = 0.6$

 $Q^2 = 3 \text{ GeV}^2$, $x_B = 0.2$

