NOVEL PROBES OF THE NUCLEON STRUCTURE

Anselm Vossen

QUARK-GLUON INTERACTIONS

- Quarks probed in deep-inelastic scattering move in gluon background field
 - Gauge link Integrated effect of quark gluon interactions
- Some of the most interesting effects can be attributed to the dependence of these interactions on spatial deformations and polarization of PDFs
 - Example: Sivers effect

$$\langle \mathbf{k}_{\perp} \rangle \sim \left\langle P, S \left| \bar{q}(0) \gamma^{+} \int_{0}^{\infty} d\eta^{-} G^{+\perp}(\eta) q(0) \right| P, S \right\rangle$$

- The instant quark gluon interactions are described by Twist3 PDFs
- Projections of

$$\Phi^{\mu}_{Aij}(x) = \int \frac{\mathrm{d}\tau}{2\pi} \,\mathrm{e}^{\mathrm{i}\tau x} \langle PS | \bar{\phi}_j(0) \, g A^{\mu}(\tau n) \, \phi_i(\tau n) | PS \rangle \,.$$

EXAMPLE E(X)

- Transverse force on transversely polarized quarks (Burkhardt)
- Model calculations show significant magnitude:

Jaffe, Ji, Nucl. Phys. **B**375, 527{560 (1992).

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Single hadron cross-section: mixes other contributions:

$$\begin{split} WV_{\Delta} & \text{Approximation} \\ F_{LU}^{\sin(\phi_h)} = \frac{2M}{Q} \mathcal{I} \bigg[-\frac{k_T \hat{P}_{h\perp}}{M_h} \left(xeH_1^{\perp} + \frac{M_h}{Mz} f_1 \tilde{G}^{\perp} \right) \\ & + \frac{p_T \hat{P}_{h\perp}}{M} \left(xg^{\perp} D_1 + \frac{M_I}{Mz} h_1^{\perp} \tilde{E} \right) \bigg] \end{split}$$

NEED NEW PROBES BEYOND IH

- Additional degrees of freedom to resolve ambiguities :
- Di-hadron Correlations
- Polarized Λ production

DI-HADRON FRAGMENTATION FUNCTIONS

- Additional degree of freedom $(\vec{R} = \vec{P_1} \vec{P_2})$
 - Plus z, P_T
- Relative momentum of hadrons can carry away angular momentum
 - Partial wave decomposition in $\boldsymbol{\theta}$
 - Relative and total angular momentum \rightarrow In principle endless tower of FFs
 - Analogue of 1h production with spin in final state
- Transverse polarization dependence in collinear framework H[∠] → Most precise extraction of transversity → See M. Radici talk
- **Minimize systematics in pp**: No thrust axis, theoretically and experimentally cleaner
- Makes 'new' FFs possible, such as G_1^{\perp} : T-odd chiral even. In 1h case, this needs polarized hadron in the final state
- \rightarrow See Thursday talk for di-hadron measurements at Belle/BelleII

EXAMPLE, ACCESS OF e(x) in SIDIS X-SECTION

• Di-hadron cross section: Clean access to e(x)

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$
(WW Approximation

• Evidence from CLAS6:

HISTORY OF G_1^{\perp}

- First suggestion to observe in e⁺e⁻ by Boer, Jakob, Radici, PRD67 (2003) 094003
 - Postulate connection to jet handedness proposed by Efremov and Kharzeev Phys.Lett.
 B366 (1996) 311-315 (connection to chromomagnetic effects)
- Measurement by Belle \rightarrow No signal
- New model calculations by Matevosyan et al connecting G₁[⊥] with single hadron Collins effect in string fragmentation (a bit like worm gear functions)→Interesting to learn about spin momentum correlations in hadronization: sizable asymmetries contradicted by Belle result??
- Mistake found in Boer et. al: Phys.Rev. D97 (2018) no.7, 074019 \rightarrow Need weighted asymmetry including dependence on P_{hT}
- Accessible in SIDIS via weighted asymmetries

$G_1^{\perp}MEASUREMENT IN SIDIS AND e^+e^-$

• New Observable in e⁺e⁻:

$$\begin{pmatrix} \frac{q_T^2 \left(3\sin(\varphi_q - \varphi_R)\sin(\varphi_q - \varphi_{\bar{R}}) + \cos(\varphi_q - \varphi_R)\cos(\varphi_q - \varphi_{\bar{R}})\right)}{M_h \bar{M}_h} \\ = \frac{12\alpha^2 A(y)}{\pi O^2} \sum e_a^2 \left(G_1^{\perp a, [0]} - G_1^{\perp a, [2]}\right) \left(\bar{G}_1^{\perp \bar{a}, [0]} - G_1^{\perp \bar{a}, [2]}\right),$$

Matevosyan., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. **D** 97, 074019 (2018).

• New Observable in SIDIS with longitudinal target and beam spin asymmetries :

$$\left\langle \frac{P_{h\perp} \sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{UL} \sim S_L \sum_a e_a^2 g_{1L}^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$

Matevosyan, Kotzinian ADP-17-42-T1048

$$\left\langle \frac{P_{h\perp}\sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{LU} \sim \lambda_e \sum_a e_a^2 f_1^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$

N.B. Compass did not observe significant asymmetry for unweighted asymmetry

PHYSICS RUNNING STARTED

CLAS12 Forward Detector

p(e,e')p @ 2.2 GeV

- Detectors were operated during engineering run at luminosities from 0.75 x 10³⁴ to 1.75 x 10³⁵
- The latter is nearly twice the design luminosity!
- Physics production run started at a luminosity of 0.7 x 10³⁵ – run group A (13 experiments)

CLAS12 Central Detector with 3 charged particles

PROJECTIONS FOR ASYMMETRIES SENSITIVE TO e(x)

- I 20/30 days of running are approved with unpolarized liquid H2/liquid D2 targets (underway!)
- I 20 + 50 days of running are approved with longitudinally polarized NH3/ND3 targets (targets ready ~2020)

LAMBDA PRODUCTION

- Inclusion of polarization leads to rich hadronization structure (see e.g. Kanazawa, Metz Pitonyak, Schlegel Phys.Lett. B744 (2015) 385-390, Metz, Pitonyak Phys.Lett. B723 (2013) 365-370
- Longstanding question: Large Λ transverse polarization in unpolarized pp collision
- \rightarrow Polarizing FF $D_{1T}^{\perp}(z, p_{\perp}^2)$?

OBSERVATION BY BELLE

Y. Guan, <u>arXiv:1611.</u>0668

- More clarity
- Some questions remain
- SIDIS input will help with universality questions, modeling

TENSION WITH THEORY: ASSOCIATED PRODUCTION

CAN WE SEE CURRENT Λ AT CLASI2?

- Would open up many physics topics
- Example, compare with Λ^{\uparrow} production in e+e- (Boer, Kang, Vogelsang, Yuan, PRL. 105 (2010) 202001, learn about TMD factorization
- **Optimistically** expect ~100M Λ s is initial running with unpolarized target in acceptance

SUMMARY

- Novel Probes Λ and IFF open up new physics opportunities
- Need synergy between e⁺e⁻ (Belle II)
 - G₁[⊥]
 - Polarization dependent Di-hadron measurements with kaons in the final state
- and **SIDIS**
 - IFF and G_1^{\perp} measurements at CLAS12 with polarized beam and polarized target
 - $\Lambda \text{ at CLASI2}$

OUTLOOK TO BELLE II

21

- Polarization rises with p_t in the lowest z_{Λ} and highest z_{Λ} bin. But the dependence constant around I GeV in the intermediate z_{Λ} bins \rightarrow Unexpected! (might be related to fragmenting quark flavor dependence on z_1, z_2)
- Correlation with opposite hemisphere light meson \rightarrow quark flav/charge dependence

CONCLUSION

Hall B – understanding nucleon structure via generalized parton distributions and transverse momentum distributions

