The High-Q ${ }^{2}$ Form Factor Program at Jefferson Lab

Andrew Puckett
University of Connecticut

CIPANP 2018: Thirteenth Conference on the Intersections of Particle and Nuclear Physics

Outline

- Introduction: Nucleon Elastic Electromagnetic Form Factors (EMFFS): definitions and formalism
- Current experimental status of proton and neutron FFs at large Q^{2}
- Highlights of nucleon EMFF program in the 11 GeV era of CEBAF
- Hall A G Mp measurement
- CLAS G_{Mn} experiment
- Super BigBite Spectrometer (SBS) FF program: $\mathrm{G}_{\mathrm{Mn}}+\mathrm{G}_{\mathrm{En}}+\mathrm{G}_{\mathrm{Ep}}$
- Prospects for EMFF measurements at a future polarized Electron-Ion Collider
- Theory Highlights (time permitting)

Acknowledgements

- CIPANP 2018 organizers for the opportunity to present this research
- SBS and Hall A collaborations
- Support from US Department Of Energy, Office of Science, Office of Nuclear Physics, Award ID DESC0014230 (Early Career research program)
- The University of Connecticut and Jefferson Lab for additional research support

Elastic $e N$ scattering and form factors: formalism

$$
\mathcal{M}=\frac{4 \pi \alpha}{q^{2}} \bar{u}\left(k^{\prime}\right) \gamma^{\mu} u(k) g_{\mu \nu} \bar{u}\left(p^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\nu}+F_{2}\left(q^{2}\right) \frac{i \sigma^{\nu \alpha} q_{\alpha}}{2 M}\right] u(p)
$$

Invariant amplitude for elastic eN scattering in the one-photon-exchange approximation

Differential cross section in the nucleon rest frame:
Rosenbluth formula

Sachs Form Factors G_{E} (electric) and G_{M} (magnetic), are experimentally convenient linearly independent combinations of

$$
\begin{aligned}
G_{E} & \equiv F_{1}-\tau F_{2} \\
G_{M} & \equiv F_{1}+F_{2} \\
\tau & \equiv \frac{Q^{2}}{4 M^{2}}
\end{aligned}
$$

experımentally convenıent linearly independent combinations of

$$
\sigma_{R} \equiv \frac{\varepsilon(1+\tau) \frac{d \sigma}{d \Omega_{e}}}{\left(\frac{d \sigma}{d \Omega_{e}}\right)_{M o t t}}=\varepsilon G_{E}^{2}+\tau G_{M}^{2}
$$

Rosenbluth Separation Method: Measure cross section at fixed Q^{2} as a function of $\boldsymbol{\varepsilon}$ to obtain $G_{E}{ }^{2}$ (slope) and $G_{M}{ }^{2}$ (intercept).

Rosenbluth Separation Method

- The nucleon structuredependent part of the cross section factorizes from the "point-like" part.
- The "reduced cross section" σ_{R} depends linearly on ϵ for a given Q^{2}, with slope G_{E}^{2} and intercept τG_{M}^{2}.
- Experimentally, one measures $d \sigma / d \Omega$ while varying the beam energy and scattering angle to change ϵ while holding Q^{2} constant

FIG. 2 (color online). Reduced cross sections as a function of ε. The solid line is a linear fit to the reduced cross sections, the dashed line shows the slope expected from scaling ($\mu_{p} G_{E} / G_{M}=1$), and the dotted line shows the slope predicted by the polarization transfer experiments [6].

FIG. 22. Reduced cross sections divided by the square of the dipole fit plotted versus ϵ for each value of Q^{2}. The 1.6 GeV data points correspond to the leftmost point on each line, and the E136 data point is the rightmost point on the $Q^{2}=8.83(\mathrm{GeV} / \mathrm{c})^{2}$ line. The inner error bars show the statistical error, while the outer error bars show the total point-to-point uncertainty, given by the quadrature sum of the statistical and point-to-point systematic errors. An overall normalization uncertainty of $\pm 1.77 \%$ has not been included.

Qattan et al., Phys. Rev.
Lett. 94, 142301 (2005)

Andivahis et al., Phys. Rev.
D 50, 5491 (1994)

$$
\begin{aligned}
\frac{d \sigma}{d \Omega_{e}} & =\left(\frac{d \sigma}{d \Omega_{e}}\right)_{M o t t} \frac{\epsilon G_{E}^{2}+\tau G_{M}^{2}}{\epsilon(1+\tau)} \\
\left(\frac{d \sigma}{d \Omega_{e}}\right)_{M o t t} & =\frac{\alpha^{2} \cos ^{2}\left(\frac{\theta_{e}}{2}\right)}{4 E_{e}^{2} \sin ^{4}\left(\frac{\theta_{e}}{2}\right)} \frac{E_{e}^{\prime}}{E_{e}} \\
\sigma_{R} & =\epsilon G_{E}^{2}+\tau G_{M}^{2}
\end{aligned}
$$

Polarization Transfer in Elastic $\boldsymbol{e} N$ scattering

Polarized Beam-Polarized Target Asymmetry

$\overrightarrow{\mathbf{P}} \equiv$ Target polarization

- The beam helicity asymmetry in elastic $e N$ scattering from a polarized target is related to the transferred polarization by time reversal symmetry.
- The asymmetry A_{t} for target polarization perpendicular to the momentum transfer but parallel to the scattering plane ($\theta^{*}=90^{\circ}, \phi^{*}=0$) equals the transverse component P_{t} of the transferred polarization.
- The asymmetry A_{ℓ} for target polarization along the momentum transfer direction $\left(\theta^{*}=0\right)$ is equal in magnitude but opposite in sign to the longitudinal transferred polarization P_{ℓ}.
- The sign change between A_{ℓ} and P_{ℓ} is due to the proton spin flip required for the absorption of the transversely polarized virtual photon

$$
\begin{aligned}
A_{e N} & =-\frac{P_{\text {beam }} P_{\text {target }}}{1+\frac{\epsilon}{\tau} r^{2}}\left[\left(\sqrt{\frac{2 \epsilon(1-\epsilon)}{\tau}} \sin \theta^{*} \cos \phi^{*}\right) r+\sqrt{1-\epsilon^{2}} \cos \theta^{*}\right] \\
& \equiv P_{\text {target }}\left[A_{t} \sin \theta^{*} \cos \phi^{*}+A_{\ell} \cos \theta^{*}\right] \\
A_{t} & =P_{t} \\
A_{\ell} & =-P_{\ell} \\
A_{n} & =P_{n}=0
\end{aligned}
$$

Proton FFs-Rosenbluth data

Maximum contribution of G_{E}^{2} term to σ_{R} vanishes at large τ. Fits to FF data are described in Phys. Rev. C, 96, 055203
(2017) (more on these later)

$$
\sigma_{R}=\epsilon G_{E}^{2}+\tau G_{M}^{2}
$$

$$
\begin{aligned}
G_{D} & \equiv\left(1+\frac{Q^{2}}{\Lambda^{2}}\right)^{-2} \\
\Lambda^{2} & =0.71 \mathrm{GeV}^{2}
\end{aligned}
$$

- Elastic $e p$ cross sections have been measured for $0.003 \leq Q^{2} \leq 31.2 \mathrm{GeV}^{2}$.
- Rosenbluth data for G_{E}^{p} and G_{M}^{p} are qualitatively described by the "dipole" form factor, which is the Fourier transform of a spherically symmetric, exponentially decreasing radial charge/magnetization density.

Proton FFs-Polarization Data

GEp-III/GEp-2 γ final results (Puckett et al., Phys. Rev. C 95, 055203 (2017))

New "Global" proton FF Fits: Data/fit ratios

- The global fits described in the appendix of Puckett et al., Phys. Rev. C 95, 055203 (2017) were used in the analysis described therein to estimate the bin centering effects for the FF ratio at $2.5 \mathrm{GeV}^{2}$, and to ensure a self-consistent extraction of $P_{\ell} / P_{\ell}^{B o r n}$.
- The recent Mainz low- Q^{2} data (Bernauer et al.) were not included in the fits.

Proton FFs compared to data: "Global Fit II"

Neutron form factors- $G_{M n}$ existing data

- Three main methods have been used to measure G_{Mn} :
- "Ratio" method: measure cross section ratio of $d\left(e, e^{\prime} n\right) p / d\left(e, e^{\prime} p\right) n$ in quasi-elastic kinematics
- Absolute d(e,e'n)p quasi-elastic cross section measurement
- Beam-target double-spin asymmetry* in inclusive quasi-elastic ${ }^{3} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$

Jefferson Lab
5/31/2018

Lachniet et al., CLAS Collaboration, Phys.Rev.Lett. 102 (2009) 192001

- *Note: double-spin asymmetry method for $G_{M n}$ would not work for a free neutron target, as the free nucleon asymmetry depends only on the ratio G_{E} / G_{M}, and not G_{E} or G_{M} independently.
- Widest combined Q^{2} coverage and precision from recent CLAS 6 GeV data from $1<\mathrm{Q}^{2}<5 \mathrm{GeV}^{2}$ consistent with "standard" dipole
- Consistency issues in low- Q^{2} data

Neutron form factors- $G_{\text {En }}$ existing data

Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)

Schlimme et al., Phys.Rev.Lett. 111 (2013), 132504

- $G_{E n}$ is the least well-known and most difficult to measure of the nucleon EMFFs:
- Goes to zero at low Q^{2} and cross-section contribution is small at large Q^{2}
- Existing knowledge is based on polarization observables:
- Beam-target double-spin asymmetry in semi-exclusive quasi-elastic ${ }^{3} \mathbf{H e}(\mathbf{e}, \mathrm{e}$ 'n) pp
- Beam-target double-spin asymmetry in semi-exclusive quasi-elastic ${ }^{2} \mathbf{H}(\mathbf{e}, \mathrm{e}$ 'n)p
- Neutron recoil polarimetery: d(e,e'n)p

New! $\mathrm{G}_{\text {En }}$ at $1.16 \mathrm{GeV}^{\mathbf{2}}$ from Hall A E02-013

R. F. Obrecht et al. (in preparation)

- The last unpublished measurement of $G_{\text {En }}$ from E02-013 in JLab's Hall A , which was taken during the commissioning phase of the experiment, was analyzed by UConn Ph.D. thesis student Freddy Obrecht.
- Preliminary result is consistent with Plaster et al. deuteron recoil polarization data at similar Q^{2}
- Analysis essentially complete, up to some debugging of the code used to calculate the nuclear corrections to extract the free neutron asymmetries from measured quasi-elastic on ${ }^{3} \mathrm{He}$.
- Draft archival paper for the whole experiment (all four Q^{2} points), including reanalysis of published measurements, is also nearly complete.

Taking stock of nucleon FF data at the start of JLab $12 \mathbf{G e V}$

World data for $G_{E p}, G_{M p}, G_{E n}, G_{M n}$ compared to selected theoretical model predictions from Puckett et al., Phys.

Rev. C, 85, 045203 (2012)

$$
G_{D}=\left(1+\frac{Q^{2}}{\Lambda^{2}}\right)^{-2}, \Lambda^{2}=0.71 \mathrm{GeV}^{2}
$$

- Flavor decomposition of nucleon FFs: Cates et al., Phys. Rev. Lett., 106, 252003 (2011)
- Different behavior of u and d quark contributions to FFs can be interpreted as a probe/signature of diquark correlations

High-Q ${ }^{2}$ Nucleon Form Factors in the 12 GeV era of CEBAF

CEBAF@ Jefferson Lab

- Superconducting RF electron linacs with up to 5 X recirculation
- CW ("100\%" duty factor) operation (2 ns bunch period, $\sim 0.3 \mathrm{ps}$ bunch length)
- Polarized source: up to $85-90 \%$ polarization
- Three experimental Halls
- Energy up to 6 GeV (upgrade will increase to

JLab Aerial View

 $11(12) \mathrm{GeV}$ to Halls A/B/C (D))- Current (up to $180 \mu \mathrm{ACW}$)

The 12 GeV Upgrade of CEBAF

Site Aerial, June 2012
UCDNN 巳efterono Lab

- Superconducting RF electron linacs with up to 5X recirculation
- CW (100% duty factor) operation up to ~ 80 $\mu A(\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D})$
- Polarized source: up to $85-90 \%$ polarization
- Three experimental Halls
- Energy up to $11(12) \mathrm{GeV}$ at 5 (5.5) passes to Halls A/B/C (D)

Electron Scattering Kinematics @11 GeV

- Particles associated with the partonic (or other) degree of freedom that absorbed the virtual photon are found predominantly near the direction of the momentum transfer \mathbf{q}
- Partonic interpretation of electron scattering data is accessible at large $Q^{2} \rightarrow$ particles of interest are located at forward angles and high momentum
- Measurements of elastic FFs, SIDIS, DVCS, etc involve coincidence $\mathrm{N}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{X}\right)$ (electroproduction) reactions, where $\mathrm{X}=$
- N' (elastic or quasi-elastic)
- h (SIDIS or DVMP)
- γ (DVCS)
- Virtual photon angle decreases as "inelasticity" increases:

$$
Q^{2}=2 M \nu x_{B j}
$$

JLab detector landscape

Figure credit: B. Wojtsekhowski (JLab)

11/16/15

- Complementary equipment/capabilities of Halls A, B, C allow optimal matching of (Luminosity x Acceptance) of the detectors to the luminosity capabilities of the targets, including state-of-the-art polarized target technology.

Precision elastic ep cross sections in Hall A

Projected uncertainties from recently completed Hall A high-Q ${ }^{\mathbf{2}} \mathbf{G}_{\text {Mp }}$ run: 2018 publication anticipated

- Elastic ep \rightarrow ep cross section at large Q^{2} is dominated by G_{Mp}.
- Existing data for $\mathrm{Q}^{2} \geq 10 \mathrm{GeV}^{2}$ come from two SLAC experiments (Kirk et al., Phys. Rev. D 8, 63 (1973) and Sill et al.,Phys. Rev. D, 48(1), 29 (1993)) with large uncertainties
- The absolute elastic $e p$ cross section data serve as the "anchor" for the determination of all four nucleon EMFFs

The CLAS12 Spectrometer in Hall B

- Large-acceptance, general purpose detector for charged and neutral particles
- Designed to detect multi-particle final states with broad kinematic coverage for exclusive and semi-inclusive reactions at moderately high luminosity
- 5T central solenoid
- Toroidal magnetic field for forwardgoing particles
- Physics program: GPDs, TMDs, spin, etc.

CLAS12 G_{Mn} : experiment E12-07-104

$$
R=\frac{\frac{d \sigma}{d \Omega}\left(D\left(e, e^{\prime} n\right)\right)}{\frac{d \sigma}{d \Omega}\left(D\left(e, e^{\prime} p\right)\right)}
$$

$$
R=a\left(Q^{2}\right) \frac{\sigma_{m o t t}^{n}\left(G_{E}^{n 2}+\frac{\tau_{n}}{\varepsilon_{n}} G_{M}^{n 2}\right)\left(\frac{1}{1+\tau_{n}}\right)}{\sigma_{m o t t}^{p}\left(G_{E}^{p 2}+\frac{\tau_{p}}{\varepsilon_{p}} G_{M}^{p}\right)\left(\frac{1}{1+\tau_{p}}\right)}
$$

Figure 18: Comparison of the simulated W^{2} spectra for the $D\left(e, e^{\prime} n\right) X$ (left-hand panel) and $D\left(e, e^{\prime} n\right) p$ reactions (right-hand panel). Both spectra are for $\theta_{p q}<3^{\circ}$.

- Extract neutron magnetic form factor from the ratio of $\mathrm{d}(\mathrm{e}, \mathrm{e} \mathrm{e} \mathrm{n}) / \mathrm{d}(\mathrm{e}, \mathrm{e} \mathrm{e} \mathrm{p})$ quasielastic cross sections and known form factors of the proton
- Nuclear corrections small at large Q^{2}
- Important to have independent data (SBS and CLAS12) in high- Q^{2} regime to cross-check systematics of G_{Mn}

The Super BigBite Spectrometer in Hall A

- What is SBS? \rightarrow A $2.5 \mathrm{~T}^{*} \mathrm{~m}$ dipole magnet with vertical bend, a cut in the yoke for passage of the beam pipe to reach forward scattering angles, and a flexible/modular configuration of detectors.
- Designed to operate at luminosities up to $10^{39} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with large momentum bite, moderate solid angle
- Time-tested "Detectors behind a dipole magnet", twoarm coincidence approach-historically most productive in fixed-target expts.
- Large solid-angle + high luminosity @ forward angles = most interesting physics!

Gas Electron Multipliers (GEMs): High-Rate, High Resolution Charged-Particle Tracking

Recent technology: F. Sauli, NIM A 386, 531 (1997)

- High spatial granularity
- Ability to cascade several foils: higher gain at lower applied voltage, reduced discharge risk
- Readout and amplification stages decoupled
- Excellent spatial resolution $\sim 70 \mu \mathrm{~m}$
- Fast signals: intrinsic time resolution $<10 \mathrm{~ns}$
- Enabling technology for SBS physics program!

UCDNN efeteron Lab salızans
 and GEM [84].
Stable gain up to very high rates

Space resolution

CIPANP 2018

Experiment E12-07-109 $\left(G_{E_{\mathrm{E}}} / \mathrm{G}_{\mathrm{Mp}}\right.$ at large $\left.\mathrm{Q}^{2}\right)$

Electron arm: Lead-glass
EM calorimeter and

40-cm liquid hydrogen target:
Luminosity $8 \times 10^{38} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
scintillator based coordinate detector

Proton Arm: SBS dipole, GEM trackers and
CH_{2} analyzers for proton polarimetry, ironscintillator HCAL for trigger

- Original motivation for SBS concept. Need large solid angle to overcome rapidly falling cross section at large Q^{2} in elastic ep scattering. New double proton polarimeter with GEM-based tracking and hadronic calorimeter-based trigger
- Lead-glass electromagnetic calorimeter to detect the scattered electron in coincidence (using two-body kinematic correlations to aid tracking in high-rate environment and reject inelastic background events); also provides a selective trigger for high-energy electrons.

SBS G G ${ }^{\text {ep }}$ Projected Results

- The SBS GEP experiment in ~ 11 days running will dramatically improve the statistical precision in $\mu G_{E} / G_{M}$ at Q^{2} in the range overlapping GEp-II/III, and in 30 days will reach comparable precision at $12 \mathrm{GeV}^{2}$ to that of GEp-II/III at $5-6 \mathrm{GeV}^{2}$
- Data of such precision carry significant discovery potential and may (or may not) settle the questions of a zero crossing of $\mathrm{G}_{\mathrm{E}}{ }^{\mathrm{p}}$ and the onset (or lack thereof) of dimensional scaling.
- Combined with GEN, GMN, GMP experiments, full flavor decomposition of F_{1} and F_{2} becomes possible up to $10 \mathrm{GeV}^{2}$

| Kinematics and expected accuracy | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{E}
 $(\mathbf{G e V})$ | \mathbf{Q}^{2}
 $\left(\mathbf{G e V} \mathbf{V}^{2}\right)$ | $\boldsymbol{\theta}_{\mathbf{E}}$
 (deg) | $\mathbf{P}_{\mathbf{e}}$
 $(\mathbf{G e V})$ | $\boldsymbol{\Theta}_{\mathbf{p}}$
 (deg) | $\mathbf{P}_{\mathbf{p}}$
 $(\mathbf{G e V})$ | Days | $\Delta \mu \mathbf{G}_{\mathbf{E}} / \mathbf{G}_{\mathrm{M}}$ |
| 6.6 | 5.0 | 25.3 | 3.94 | 29.0 | 3.48 | 1 | 0.023 |
| 8.8 | 8.0 | 25.9 | 4.54 | 22.8 | 5.12 | 10 | 0.032 |
| 11.0 | 12.0 | 28.2 | 4.60 | 17.4 | 7.27 | 30 | 0.074 |

Experiment E12-09-019 (\mathbf{G}_{Mn} at large $\left.\mathbf{Q}^{2}\right)$

Electron arm: BigBite Spectrometer

First SBS experiment: JLab Experimental Readiness
Review (ERR) completed 2017, projected installation/start of SBS program in 2020

10-cm liquid deuterium/hydrogen target (luminosity ~2
$\times 10^{38}$)

Neutron/proton Arm: SBS dipole, HCAL, and coordinate detector (not shown) for charged-particle veto

- Neutron magnetic form factor at large Q^{2} is obtained from the ratio of quasi-elastic $\mathrm{d}(\mathrm{e}, \mathrm{e}$ 'n $n) \mathrm{p} / \mathrm{d}(\mathrm{e}, \mathrm{e}$ 'p)n cross sections on a deuterium target and precise knowledge of elastic ep cross section
- SBS dipole deflects protons to separate from neutrons (relative to \vec{q} vector); nucleon momentum is measured using time-of-flight method to separate quasi-elastic/inelastic channels.
- Existing BigBite spectrometer with upgraded detector package detects the scattered electron.

SBS G ${ }_{\text {Mn }}$ projected Results

- SBS as neutron arm w/48D48 + HCAL
- Magnet sweeps charged particles out of acceptance, limiting backgrounds and "CDet" acts as charged-particle veto
- BigBite as electron arm w/upgraded 12 GeV detector package (including re-use of GEMs, built for GEP, not otherwise in use during BigBite expt's.)
- Standard LH2/LD2 target
- Different detection method-different (and smaller) systematics; complementary to CLAS12 G_{Mn} measurement
- Overlapping collaborations between CLAS12 and SBS experiments.

Experiment E12-09-016 (G_{En} at large $\left.\mathbf{Q}^{2}\right)$

- Detector configuration same as GMN experiment
- Upgraded, high-luminosity polarized ${ }^{3} \mathrm{He}$ target based on spin-exchange optical pumping and convectiondriven circulation of polarized gas between optical pumping chamber and target chamber.
- Will reach $\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$ in 50 days (approximately tripling Q^{2} reach of the data)

The SBS Form Factor Program-Summary

- SBS high- Q^{2} form factor program:
- Map transition to perturbative regime-running of dressed quark mass function
- Imaging of the nucleon charge and magnetization densities in impact-parameter space in the infinite momentum frame.
- Precision high-Q ${ }^{2}$ form factors have significant impact on GPD extraction from DVCS
- GEP: Proton electric form factor, increase Q^{2} range from $8.5 \rightarrow 12 \mathrm{GeV}^{2}$
- GEN: Neutron electric form factor, increase Q^{2} range from $3.4 \rightarrow 10 \mathrm{GeV}^{2}$
- GMN: Neutron magnetic form factor, increase Q^{2} range from $5 \rightarrow 13.5 \mathrm{GeV}^{2}$

Summary of JLab 11 GeV high-Q ${ }^{2}$ FF program

- The measurement of nucleon EMFFs at "large" momentum transfers Q^{2} is currently a unique worldwide capability of CEBAF and one of the "flagship" science programs of the 11 GeV era.
- The high- ${ }^{2}$ FFs continue to garner considerable interest from the hadronic physics theory community, given their status as (arguably) the simplest and most well-defined measurable dynamical properties of the nucleon, as a benchmark for all theoretical predictions of nucleon structure, and as an important input to the interpretation of many other experiments in nuclear and hadronic physics.
- The discrepancy between extractions of G_{E}^{p} from cross section and polarization data is still not fully understood or explained in a modelindependent way.
- A coherent program of high- $\mathrm{Q}^{2} \mathrm{FF}$ measurements is approved that will optimally exploit the complementary capabilities of Halls A, B, and C
- The prospect of high-current, unpolarized and/or low-current, polarized e^{+}beams at CEBAF would enable conclusive experimental tests of TPEX as the source of the discrepancy.

Prospects for future nucleon EMFF

measurements at an EIC

 (JLEIC concept)
JLEIC Design Update (Apr. 2017)

energy range:
E_{e} : 3 to 12 GeV
$E_{p}: 40$ to $100-400 \mathrm{GeV}$ $\sqrt{ }$ s: 20 to $65-140 \mathrm{GeV}$ (upper limit depends on magnet tech. choice)

- Electron complex - CEBAF
- Electron collider ring

JLEIC energy reach and luminosity

 (log)

High polarization: Figure-8

- Figure-8 concept: spin precession in one arc is exactly cancelled in the other
- Spin stabilization by small fields: ~3Tm vs. ~ 400 Tm for deuterons at 100 GeV
- Criterion: induced spin rotation >> spin rotation due to orbit errors
- Polarized deuterons possible
- 3D spin rotator: combination of small rotations about different axes provides any polarization orientation at any point in the collider ring
- No effect on the orbit
- Adiabatic spin flips
- Spin tracking in progress

Integration IR: total acceptance

Relatively large crossing angle (50 mr) combined with large aperture final focus magnets, and forward dipoles are keys to this design.

High luminosity: electron cooling

- DC cooling for emittance reduction
- BBC cooling for emittance preservation against intra-beam scattering

JLEIC Parameters (3T option)

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)	
		p	e	p	e	p	e
Beam energy	GeV	40	3	100	5	100	10
Collision frequency	MHz	476		476		$476 / 4=119$	
Particles per bunch	10^{10}	0.98	3.7	0.98	3.7	3.9	3.7
Beam current	A	0.75	2.8	0.75	2.8	0.75	0.71
Polarization	\%	80\%	80\%	80\%	80\%	80\%	75\%
Bunch length, RMS	cm	3	1	1	1	2.2	1
Norm. emittance, hor / ver	$\mu \mathrm{m}$	$0.3 / 0.3$	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4
Horizontal \& vertical β^{*}	cm	8/8	13.5/13.5	6/1.2	5.1/1.0	10.5/2.1	4/0.8
Ver. beam-beam parameter		0.015	0.092	0.015	0.068	0.008	0.034
Laslett tune-shift		0.06	7×10^{-4}	0.055	6×10^{-4}	0.056	7×10-5
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3
Hourglass(HG) reduction		1		0.87		0.75	
Luminosity/IP, w/HG, 1033	$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$	2.5		21.4		5.9	

Elastic ep Scattering in JLEIC Kinematics (neglecting crossing angle)

 energy in collision (think bowling-ball ping-pong ball collision)

- Outgoing proton and electron are detectable in JLEIC " 100% acceptance" IR $=E_{e}+\frac{Q^{2}\left(p_{p}-E_{e}\right)}{2 E_{e}\left(E_{p}+p_{p}\right)}$ design over a wide range of Q^{2}.
- Angular/momentum resolution requirements for the identification of elastic ep channel in the presence of dominant inelastic backgrounds needs to be
$\epsilon=\frac{s u-M^{4}}{s u-M^{4}+2 M^{2} t-\frac{t^{2}}{2}}$ evaluated
- For "reasonable" Q^{2} values (unfortunately), $\epsilon \approx 1$ since $|s|,|u| \gg|t|$

Estimated elastic ep event rates (Born xsec.) for JLEIC scenarios

Theory Highlights-Why are we still interested in pushing elastic FF measurements to yet higher Q^{2}, when the measurements are so "hard" (in terms of cross section)?

GEp/GMp high-Q ${ }^{2}$ polarization data are among most-cited JLab results

- GEp-I:
- Jones et al., Phys. Rev. Lett. 84 (2000) 13981402: 843 INSPIRE-HEP citations
- Punjabi et al., Phys.Rev. C71 (2005) 055202: 410 INSPIRE-HEP citations
- GEp-II:
- Gayou et al., Phys.Rev.Lett. 88 (2002) 092301: 766 INSPIRE-HEP citations
- Puckett et al., Phys.Rev. C85 (2012) 045203: 126 INSPIRE-HEP citations
- GEp-III/GEp-2 γ :
- Puckett et al., Phys.Rev.Lett. 104 (2010) 242301, 238 INSPIRE-HEP citations
- Meziane et al., Phys.Rev.Lett. 106 (2011) 132501, 72 INSPIRE-HEP citations
- Puckett et al., Phys.Rev. C96 (2017) no.5, 055203, 8 INSPIRE-HEP citations
- Low-Q ${ }^{2}$ data from JLab:
- Ron et al., Phys.Rev.Lett. 99 (2007) 202002, 68 INSPIRE-HEP citations
- Ron et al., Phys.Rev. C84 (2011) 055204, 87 INSPIRE-HEP citations
- Zhan et al., Phys.Lett. B705 (2011) 59-64, 152 INSPIRE-HEP citations
- Paolone et al., Phys.Rev.Lett. 105 (2010) 072001, 80 INSPIRE-HEP citations

Doug Higinbotham's listing of "Hall A" publications by citation count:


```
* C \ (1) hallaweb.jlab.org/publications/ 
```


Publication Lists

- DOI Numbers

Jefferson Lab Database

- Home
- Thesis List
- Search
- Submit

Internal Documents

- Annual Reports
(current) I (archive)
- Technical Notes

Publication Archives

- arXiv.org
- inspire

Total of 113 Hall A Refereed Publications
compiled Tue Feb 27 06:50:08 EST 2018
Renowned Papers (500+ inspire citations)
Gayou et al., Phys. Rev. Lett., 88 (2002) 092301. (arXiv) I (doi) I (inspire). I (pdf) Jones et al., Phys. Rev. Lett., 84 (2000) 1398-1402. (arXiv) I (doi). I (inspire). I (pd ${ }^{+f}$

Famous Papers (250-499 inspire citations)
Qattan et al., Phys. Rev. Lett., 94 (2005) 142301. (arXiv) I (doi) I (inspire) I (pdf) Punjabi et al., Phys. Rev., C71 (2005) 055202. (arXiv) I (doi). I (inspire). I (pdf)
Very Well-Known Paper (100-249 inspire citations)
Abrahamyan et al., Phys. Rev. Lett., 108 (2012) 112502. (arXiv) I (doi) I (inspire) I (pdf) Abrahamyan et al., Phys. Rev. Lett., 107 (2011) 191804. (arXiv) I (doi) I (inspire) I (pdf) Qian et al., Phys. Rev. Lett., 107 (2011) 072003 . (arXiv). I (doi) I (inspire) I (pdf). Puckett et al., Phys. Rev., C85 (2012) 045203. (arXiv) I (doi) I (inspire) I (pdf) Zhan et al., Phys. Lett., B705 (2011) 59-64. (arXiv) I (doi) I (inspire) I (pdf) Weinstein et al., Phys. Rev. Lett., 106 (2011) 052301. (arXiv) I (doi) I (inspire) I (pdf) Riordan et al., Phys. Rev. Lett., 105 (2010) 262302. (arXiv) I (doi) I (inspire) I (pdf) Puckett et al., Phys. Rev. Lett., 104 (2010) 242301. (arXiv) I (doi) I (inspire) I (pdf) Subedi et al., Science, 320 (2008) 1476-1478. (arXiv) I (doi). I (inspire) I (pdf) Mazouz et al., Phys. Rev. Lett., 99 (2007) 242501. (arXiv) I ((doi) I (inspire) I (pdf). Shneor et al., Phys. Rev. Lett., 99 (2007) 072501. (arXiv) I ((doi) I I (inspire) I I (pdf). Acha et al., Phys. Rev. Lett., 98 (2007) 032301. (arXiv) I (doi) I (inspire) I (pdf) Camacho et al., Phys. Rev. Lett., 97 (2006) 262002. (arXiv) I (doi) I (inspire) I (pdf). Aniol et al., Phys. Lett., B635 (2006) 275-279. (arXiv) I (doi) | (inspire) I (pdf) Aniol et al., Phys. Rev. Lett., 96 (2006) 022003. (arXiv) I (doi) I (inspire) I (pdf). Amarian et al., Phys. Rev. Lett., 92 (2004) 022301. (arXiv) I (doi). I (inspire) I (pdf). Alcorn et al., Nucl. Instrum. Meth., A522 (2004) 294-346. (doi) I (inspire) Zheng et al., Phys. Rev., C70 (2004) 065207. (arXiv) I (doi) I (inspire) I (pdf) Aniol et al., Phys. Rev., C69 (2004) 065501. (arXiv) I (doi) I (inspire) I (pdf) Zheng et al., Phys. Rev. Lett., 92 (2004) 012004. (arXiv) I (doi) I (inspire) I (pdf) Strauch et al., Phys. Rev. Lett., 91 (2003) 052301. (arXiv) I (doi). I (inspire) I (pdf) Amarian et al., Phys. Rev. Lett., 89 (2002) 242301. (arXiv) I (doi) I (inspire) I (pdf) Aniol et al., Phys. Lett., B635 (2006) 275-279. (arXiv) I (doi) I (inspire). I (pdf) Xu et al., Phys. Rev. Lett., 85 (2000) 2900-2904. (arXiv) I (doi) I (inspire) I (pdn Aniol et al., Phys. Rev. Lett., 82 (1999) 1096-1100. (arXiv). I (doi) I (inspire) I (pdf).

Well-known Papers (50-99 inspire citations)
Hen et al., Science, 346 (2014) 614-617. (arXiv) I (doi) I (inspire) I (pdf) Ahmed et al., Phys. Rev. Lett., 108 (2012) 102001. (arXiv) I (doi) I ((inspire). I (pdf) Huang et al., Phys. Rev. Lett., 108 (2012) 052001. (arXiv). I (doi) I (inspire) I (pdf) Arrington et al., Prog. Part. Nucl. Phys., 67 (2012) 898-938. (arXiv) I (doi) I (inspire)/ (pdf) Ron et al., Phys. Rev., C84 (2011) 055204. (arXiv) I (doi) I (inspire) I (idf) Meziane et al., Phys. Rev. Lett., 106 (2011) 132501. (arXiv) I (doi) I (inspire) I (pdif)
Mezian el

High-Q ${ }^{2}$ Nucleon Form Factors, GPDs and Spin

Flavor decomposition of nucleon EMFFs (neglecting strangeness): $F_{1,2}^{p} \approx e_{u} F_{1,2}^{u}+e_{d} F_{1,2}^{d}$ $F_{1,2}^{n} \approx e_{u} F_{1,2}^{d}+e_{d} F_{1,2}^{u}$ Quark flavor FFs are integrals of valence quark GPDs H and E at zero skewness :

$$
\begin{aligned}
& F_{1}^{q}(t)=\int_{0}^{1} H_{v}^{q}(x, t) d x \\
& F_{2}^{q}(t)=\int_{0}^{1} E_{v}^{q}(x, t) d x
\end{aligned}
$$

Phys.Rev.Lett. 78 (1997) 610-613: Ji sum rule for total angular momentum $J_{q}=\frac{1}{2} \int_{-1}^{+1} d x x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]$.

Diehl, Kroll. Eur. Phys. J. C (2013) 73:2397

- FF data + forward PDFs from global DIS fits \rightarrow model-dependent extraction of GPDs
- Compute valence-quark contributions to the Ji sum rule:

$$
J_{v}^{u}=0.230_{-0.024}^{+0.009}, \quad J_{v}^{d}=-0.004_{-0.016}^{+0.010}
$$

The under-appreciated importance of knowledge of the high- \mathbf{Q}^{2} FFs in the extraction of GPDs from experiment

From the recent paper by M. Diehl and P. Kroll. Eur. Phys. J. C (2013) 73:2397

- "This requires an ansatz for the functional form of the GPDs and in this sense is intrinsically model dependent, but on the other hand it can reach values of the invariant momentum transfer t much larger than what can conceivably be measured in hard exclusive scattering..."
- "We note that the electromagnetic form factors provide indirect constraints on GPDs at high values of t, which will conceivably never be accessible in hard exclusive scattering processes."

(a)

- DVCS experiments actually measure the interference of Bethe-Heitler and DVCS handbag mechanism at the same order of $\alpha \rightarrow$ precise knowledge of elastic FFs over a wide range of Q^{2} is needed to separate DVCS contribution!
- EMFFs thus provide both direct constraints to GPDs via the sum rules and crucial input to the extraction of Compton Form Factors from experimental observables

Exposing the dressed-quark mass function

In the framework of Dyson-Schwinger equations, the high- Q^{2} nucleon $\mathrm{FFs}\left(\mathrm{Q}^{2}>5 \mathrm{GeV}^{2}\right)$ are especially sensitive to momentum-dependent dressed-quark mass function in the few-GeV region, see e.g.,:

- I. Cloet, C. Roberts, A. Thomas: "Revealing

Dressed Quarks via the Proton's Charge
Distribution", PRL 111, 101803 (2013)

- I. Cloet and C. Roberts: "Explanation and Prediction of Observables Using Continuum Strong QCD", arxiv:1310.2651v2 (2013), PPNP 77 (2014), 1-69

Dyson-Schwinger Equations, diquark correlations, and zero crossings of $G_{E p}, G_{E n}$

Fig. 3 Left panel: normalised ratio of proton electric and magnetic form factors. Curves: solid, black - result obtained herein, using our QCD-kindred framework; Dashed, blue - CI result [18]; and dot-dashed, red - ratio inferred from 2004 parametrisation of experimental data [65]. Data: blue circles [68]; green squares [69]; brown triangles [70]; purple asterisk [71]; and orange diamonds [72]. Right panel: normalised ratio of neutron electric and magnetic form factors. Curves: same as in left panel. Data: blue circles [73]; and green squares [74].
J. Segovia, I. Cloet and C. Roberts: Few-Body Syst. 55, 1185 (2014)

Quote from the abstract:

of dynamical chiral symmetry breaking in the bound-state problem. Amongst the results we describe, the following are of particular interest: $G_{E}^{p}\left(Q^{2}\right) / G_{M}^{p}\left(Q^{2}\right)$ possesses a zero at $Q^{2}=9.5 \mathrm{GeV}^{2}$; any change in the interaction which shifts a zero in the proton ratio to larger Q^{2} relocates a zero in $G_{E}^{n}\left(Q^{2}\right) / G_{M}^{n}\left(Q^{2}\right)$ to smaller Q^{2}; there is likely a value of momentum transfer above which $G_{E}^{n}>G_{E}^{p}$; and the presence of strong diquark correlations within the nucleon is sufficient to understand empirical extractions of the flavour-separated form factors. Regarding the $\Delta(1232)$-baryon, we find that, inter

Reaching high \mathbf{Q}^{2} in Lattice QCD

FIG. 3. G_{E} and G_{M} for the proton from the Feynman-Hellmann method and from a variational method described in Ref. [29] employed on the same ensemble. The experimental parametrization is from Ref. [49].

$$
\frac{\partial E_{\psi}}{\partial \lambda}=\langle\psi| \frac{\partial H}{\partial \lambda}|\psi\rangle
$$

FIG. 4. Ratio G_{E} / G_{M} for the proton from the application of the Feynman-Hellmann method, from a variational analysis of threepoint functions [29], and from experiment [5-7]. Note this is not scaled by the magnetic moment of the proton μ_{p}, as this would require phenomenological fits to the low- Q^{2} data, which is not the focus of this work.

A. J. Chambers et al., (QCDSF/UKQCD/CSSM Collaborations) Phys. Rev. D 96, 114509 (2017)

- Novel application of the Feynman-Hellman method: relates hadronic matrix elements to energy shifts, allowing access to form factors via two-point correlators as opposed to more complicated three-point functions; improves signal-to-noise ratio for high-momentum states

Transition to $\mathbf{p Q C D}-$ onset of dimensional scaling?
 seen in F_{2}^{n} / F_{1}^{n}, for values of cutoff parameter Λ similar to that which describes proton data

Rosenbluth-Polarization Discrepancy and Two-Photon-Exchange

- "Standard" QED radiative corrections to ep cross section data at lowest order in α include:
- Vertex corrections
- Vacuum polarization
- Self-energy
- Bremsstrahlung
- Two-photon exchange (TPEX) process where both photons are "hard": previously neglected
- Cannot be calculated modelindependently
- Has been shown to partially resolve the discrepancy between
L / T and polarization data for $G_{E p}$

(a) Born term.

(b) Vertex.

(c) Vacuum.

(d) Self energy.

(e) Bremsstrahlung.

Fig. 24. Born term and lowest order radiative correction graphs for the electron in elastic $e p$.

(d) Two-photon.

Status of TPEX

FIG. 3. Comparison of the recent results to the calculation by Blunden. The data are in good agreement, but generally fall below the prediction. Please note that data at similar ϵ values have been measured at different Q^{2}. Also note that the VEPP-3 data have been normalized to the calculation at high ϵ.

FIG. 2. OLYMPUS result for $R_{2 \gamma}$ using the Mo-Tsai [21] prescription for radiative corrections to all orders. Uncertainties shown are statistical (inner bars), uncorrelated systematic (added in quadrature, outer bars), and correlated systematic (gray band). Note the 12° data point at $\epsilon=0.978$ is completely dominated by systematic uncertainties.

- Henderson et al., (OLYMPUS Collaboration): Phys. Rev. Lett. 118, 092501 (2017)
- S. K. Blau, Physics Today 70, 14 (2017)
- Blunden TPEX calculation with N and $\mathrm{N}+\Delta$ intermediate states is consistent with recent $\mathrm{e}+\mathrm{p} / \mathrm{e}-\mathrm{p}$ cross section ratios from CLAS-TPE, VEPP-3 (Novosibirsk), and OLYMPUS data.
- However, all of these data have $Q^{2} \leq 2.1 \mathrm{GeV}^{2}$

Backups

Nucleon FFs and GPDs

$$
\begin{aligned}
G_{E} & \equiv F_{1}-\tau F_{2} \\
G_{M} & \equiv F_{1}+F_{2} \\
F_{1} & =\frac{G_{E}+\tau G_{M}}{1+\tau} \\
F_{2} & =\frac{G_{M}-G_{E}}{1+\tau} \\
\frac{F_{2}}{F_{1}} & =\frac{1-\frac{G_{E}}{G_{M}}}{\tau+\frac{G_{E}}{G_{M}}}
\end{aligned}
$$

- The measurement of the ratio $\frac{G_{E}}{G_{M}}$ to high Q^{2} is equivalent to a measurement of the Pauli/Dirac FF ratio $\frac{F_{2}}{F_{1}}$. The precise determination of F_{2} provides an important constraint, via modelindependent sum rules, on the high-x/high-t behavior of the tensor GPD E(x,t) that is presently only poorly constrained by existing measurements of DVCS observables. This in turn contributes to the evaluation of the Ji sum rule for the total angular momentum carried by quark flavor q :

$$
J_{q}=\frac{1}{2} \int_{-1}^{+1} d x x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]
$$

"Role of diquark correlations and the pion cloud in nucleon elastic form factors"

I. Cloet, W. Bentz and A. Thomas: Phys. Rev. C 90, 045202 (2014)

- Nucleon EMFF calculation in covariant, confining NJL model
- Parameter-free calculation (no fit to form factors)
- Softness of d-quark Dirac FF a consequence of dominance of scalar diquark correlations in nucleon wavefunction
- Axial vector diquark correlations and pion cloud effects play a more significant role in the Pauli form factors

Two-photon-exchange and the $G_{\text {Ep }}$ puzzle experiment and theory

"Hadronic" approach: Blunden, Melnitchouk, Tjon, PRC 72, 034612 (2005). TPEX corrections with N intermediate state

"Partonic" approach: Afanasev et al., PRD 72, 013008 (2005). TPEX in "hard" scattering on a single quark, embedded in nucleon through GPDs

Experimental efforts:

- Several experimental observables are directly sensitive to TPEX effects
- ε-dependence of " R " ratio from polarization transfer. GEp-2 γ : originally published Meziane et al., PRL 106, 132501 (2011), and this work
- Induced normal recoil polarization or analyzing power A_{N}; imaginary part of TPEX amplitude-never measured! Elastic $\mathrm{e}^{+} \mathrm{p} / \mathrm{e} \mathrm{p}$ cross section ratio: zero in one-photon exchange, measures real part of 2γ-exchange amplitude. Three experiments recently published:
- CLAS-TPE (JLab Hall B)
- OLYMPUS@DESY
- VEPP-III (Novosibirsk)
- For a recent review, see Afanasev et al., Prog. Part. Nucl. Phys. 95,245(2017)

GEp-2 γ data compared to model TPEX calculations

- Borisyuk: Phys. Rev. C 89, 025204 (2014).
- Dispersion theory calculation including $\mathrm{P}_{33} \pi N$ contribution with width, shape, and nonresonant continuum
- Blunden: Phys. Rev. C95, 065209 (2017)
- Dispersion theory calculation with "on shell" intermediate N (green dot-dashed) and $\mathrm{N}+\Delta$ (green dotted)
- Bystritskiy: Phys. Rev. C75, 015207 (2007).
- All-order QED RC calculation using electron structure function method
- Afanasev: Phys. Rev. D72, 013008 (2005).
- Partonic approach using GPD model
- Kivel: Phys. Rev. Lett. 103, 092004 (2009)
- PQCD approach using DAs CIPANP 2018

How to reach higher Q^{2} ?

- Elastic ep cross section scales as $\sigma \approx \mathrm{E}^{2} / \mathrm{Q}^{12}$
- FPP efficiency is roughly Q^{2}-independent
- FPP analyzing power scales roughly as $1 / p_{p}$ $\sim \mathrm{M} / \mathrm{Q}^{2}$
- Statistical FOM scales as $\mathrm{NA}_{\mathrm{y}}{ }^{2} \sim \mathrm{E}^{2} / \mathrm{Q}^{16}$
- Increase beam polarization? $80 \% \rightarrow 100 \%$ would only increase FOM by 1.6
- Increase luminosity? Best possible at JLab $12 \mathrm{GeV} \sim 10^{39} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} ; \sim$ factor of 2 above 6 GeV expt's.
- Most room for growth? \rightarrow Increase solid angle/ Q^{2} acceptance!
- 2X increase in target thickness and solid angle from $6 \rightarrow 35 \mathrm{msr}$ leads to $\sim 30 \mathrm{X}$ gain in figure-of-merit
- JLab PAC-approved $\mathrm{G}_{\mathrm{E}}^{\mathrm{p}}$ experiment: E12-07-109; 45 days in Hall A
- $\Delta\left(\mu \mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}\right) \sim 0.07 @ \mathrm{Q}^{2}=12 \mathrm{GeV}^{2}$

Statistical FOM of polarization transfer expt.'s

Experiment	$Q^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	$E_{e}(\mathrm{GeV})$	$\Delta \Omega_{p}(\mathrm{msr})$	$P_{e}(\%)$	$\Delta\left(\mu_{p} G_{E}^{p} / G_{M}^{p}\right)$	Reference
GEp-I	$0.5-3.5$	$0.9-4.1$	6.5	$40-60$	$0.01-0.05$	PRL 84, 1398 (2000),
						PRC 71, 055202 (2005)
GEp-II	$3.5-5.6$	4.6	6.5	70	$0.05-0.09$	PRL 88, 092301 (2002)
						PRC 85, 045203 (2012)
GEp-III	$5.2-8.5$	$4.0,5.7$	7	$80-85$	$0.07-0.18$	PRL 104, 242301 (2010)

Previous PT experiments: focusing magnetic spectrometers, small proton solid angle/DQ ${ }^{2}$

Theoretical PT FOM vs. Q^{2} for different beam
Theoretical PT FOM vs. ε at various Q^{2} values energies

Polarization Transfer FOM vs. $\mathbf{Q}^{2}:$ HMS/HRS vs SBS

Increase in proton solid angle from $6 \rightarrow 35 \mathrm{msr}$ and $\sim \mathbf{2 X}$ increase in luminosity leads to doubling of Q^{2} range for which absolute $\Delta\left(\mu G_{E} / G_{M}\right) \leq 0.1$

