

The Electron-Ion Collider and Deeply Virtual Compton Scattering with CLAS and CLAS12 at Jefferson Lab

• Daria Sokhan University of Glasgow Scotland

Getting to Grips with QCD - Summer Edition Primosten, Croatia — 19th September 2018

A constructivist view of the nucleon

(using M. Anselmino et al., J. Phys. Conf. Ser. 295, 012062 (2011))

Wigner function: • full phase space parton distribution of the nucleon

х

 δz_{\perp}

 $f(x,b_1)$

 \boldsymbol{b}_{\perp}

relate, in the infinite momentum frame, transverse position of partons (*b*_⊥) to longitudinal momentum (*x*).

 $\int d^2 k_T$

* Deep exclusive reactions, e.g.: Deeply Virtual Compton Scattering, Deeply Virtual Meson production, ...

Wigner function: full phase space parton distribution of the nucleon

Generalised Parton Distributions (GPDs)

Fourier Transform of electric Form Factor: transverse charge density of a nucleon

proton

neutron

C. Carlson, M. Vanderhaeghen PRL 100, 032004 (2008)

Experimental paths to GPDs

Accessible in *exclusive* reactions, where all final state particles are detected.

cliparts.co

Trodden paths, or ones starting to be explored:

Deeply Virtual Compton Scattering (DVCS)
Deeply Virtual Meson Production (DVMP)
Time-like Compton Scattering (TCS)
Double DVCS

TCS

Virtual photon time-like

DDVCS One time-like, one space-like virtual photon

υνΜΡ

DVCS Virtual photon space-like

GPDs and DVCS

***Deeply Virtual Compton Scattering:** golden channel for the extraction of GPDs.

 $\xi \cong \frac{1}{2}$

* At high exchanged Q^2 and low *t* access to four chiral-even GPDs:

$$E^q, \tilde{E}^q, H^q, \tilde{H}^q(x, \xi, t)$$

***** Can be related to PDFs:

$$H(x,0,0) = q(x) \quad \tilde{H}(x,0,0) = \Delta q(x)$$

and form factors:

$$\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$$
$$\int_{-1}^{+1} E dx = F_2 \qquad \int_{-1}^{+1} \tilde{E} dx = G_P$$

*Small changes in nucleon transverse momentum allows mapping of transverse structure at large distances.

GPDs and nucleon spin

$$J_{N} = \frac{1}{2} = \frac{1}{2}\Sigma_{q} + L_{q} + J_{g}$$

* Ji's relation: $J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\}$

*H*accessible in DVCS off the proton, first experimental constraint on *E*, through neutron-DVCS: M. Mazouz et al, PRL 99 (2007) 242501

* GPDs can provide insight into the orbital angular momentum contribution to nucleon spin: the spin puzzle.

Measuring DVCS

* Process measured in experiment:

Compton Form Factors in DVCS

Experimentally accessible in DVCS cross-sections and spin asymmetries, eg:

$$A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta \sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}}$$

At leading twist, leading order:

Which DVCS experiment?

Jefferson Lab -Hall B

CLAS @ Jefferson Lab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility:

- ***** Duty cycle: ~ 100% ***** Electron polarisation up to ~85%
- ***** Energy up to $\sim 6 \text{ GeV}$

CLAS (CEBAF Large Acceptance Spectrometer) in Hall B:

- Drift chambers
- Toroidal magnetic field
- Cerenkov Counters
- Scintillator Time of Flight
- Electromagnetic

Calorimeters

+ a forward-angle Inner Calorimeter:

Extremely large angular coverage

JLab @ 12 GeV

- * Energy up to 11 GeV (Halls A, B, C), 12 GeV Hall D
- ***** Energy spread $\delta E/E_e \sim 10^{-4}$
- * Electron polarisation up to ~80%, measured to 3%
- Beam size at target < 0.4 mm</p>

 $\begin{array}{c} \mbox{Design luminosity} \\ L\sim 10^{35}\ cm^{-2}\ s^{-1} \end{array}$

High luminosity & large acceptance: Concurrent measurement of exclusive, semi-inclusive, and inclusive processes

Acceptance for photons and electrons: • $2.5^{\circ} < \theta < 125^{\circ}$

Acceptance for all charged particles: • $5^{\circ} < \theta < 125^{\circ}$

Acceptance for neutrons: • $5^{\circ} < \theta < 120^{\circ}$

CLAS12 assembled

JLab @ 12 GeV

CLAS highlights from the 6 GeV era

Towards tomography of the proton

- * CFFs extracted in a VGG fit (local fit: constraint 5 times the predicted value)
- * Imaginary part of CFF: $F_{Im}(\xi, t) = F(\xi, \xi, t) \mp F(-\xi, \xi, t)$

Beam-spin Asymmetry (A_{LU})

AS

Follows first CLAS measurement: S. Stepanyan *et al* (CLAS), *PRL* 87 (2001) 182002

A_{LU} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{LU} characterised by imaginary parts of CFFs via: $F_1 H + \xi G_M \tilde{H} - \frac{t}{4M^2} E$

Qualitative agreement with models, constraints on fit parameters.

F.-X. Girod *et al* (CLAS), *PRL* **100** (2008) 162002.

A_{UL} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{UL} characterised by imaginary parts of CFFs via: $x_{P} = \xi t$

$$F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) - \frac{\zeta \iota}{4M^2} F_2 \tilde{\boldsymbol{E}} + \dots$$

High statistics, large kinematic coverage, strong constraints on fits, simultaneous fit with BSA and DSA from the same dataset.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

Beam- and target-spin asymmetries

 $A = \frac{\alpha sin\phi}{1 + \beta cos\phi}$

GGL: Goldstein, Gonzalez, Liuti GK: Kroll, Moutarde, Sabatié KMM: Kumericki, Mueller, Murray VGG: Vanderhaeghen, Guichon, Guidal

TSA shows a flatter distribution in *t* than BSA.

Double-spin Asymmetry (A_{LL}) $\mathcal{L}_{\mathcal{S}}$

A_{LL} from fit to asymmetry: $\frac{\kappa_{LL} + \lambda_{LL} \cos \phi}{1 + \beta \cos \phi}$

A_{LL} characterised by real parts of CFFs via:

 $F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) + \dots$

- * Fit parameters extracted from a simultaneous fit to BSA, TSA and DSA.
- Constant term dominates and is almost entirely BH.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001
S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

CFF extraction from three spin asymmetries at common kinematics.

What can we learn from the asymmetries?

Answers hinge on a global analysis of all available data.

*Information on relative distributions of quark momenta (PDFs) and quark helicity, $\Delta q(x)$.

 $H(x,0,0) = q(x) \quad \tilde{H}(x,0,0) = \Delta q(x)$

Indications that axial charge is more concentrated than electromagnetic charge.

$$\int_{-1}^{+1} H dx = F_1$$
$$\int_{-1}^{+1} \tilde{H} dx = G_A$$

E. Seder *et al* (CLAS), *PRL* **114** (2015) 032001 S. Pisano *et al* (CLAS), *PRD* **91** (2015) 052014

Towards nucleon tomography

Quasi model-independent extraction of CFFs based on a local fit:

- * Set 8 CFFs as free parameters to fit, at each (x_B, t) point, the available observables.
- * Limits imposed within +/- 5 times the VGG model predictions (Vanderhaeghen-Guichon-Guidal).
- * Leading-twist DVCS amplitude parametrisation based on Double Distributions.

Towards nucleon tomography

Relating the impact parameter to helicity-averaged transverse charge distribution:

0.8

0.7

0.6

(tm²) (0.5

(p₁²)(x) (p₁²)

0.2

0.1

$$\rho^{q}(x, \mathbf{b}_{\perp}) = \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} H^{q}_{-}(x, 0, -\mathbf{\Delta}_{\perp}^{2})$$

$$Transverse four-momentum transfer to nucleon$$

$$H^{q}_{-}(x, 0, t) \equiv H^{q}(x, 0, t) + H^{q}(-x, 0, t)$$

Assuming leading-twist and exponential dependence of GPD on *t*, using models to extrapolate to the zero skewness point $\xi = 0$ and assuming similar behaviour for *u* and *d* quarks there:

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \Delta_{\perp}^2} \ln H^q_{-}(x, 0, -\Delta_{\perp}^2) \bigg|_{\Delta_{\perp} = 0}$$

R. Dupré et al., arXiv:1704.07330 [hep-ph]

Imaging pressure within the nucleon

- * GPDs provide indirect access to mechanical properties of the nucleon (encoded in the gravitational form factors, GFFs, of the energy-momentum tensor).
- * Three scalar GFFs, functions of *t*: encode pressure and shear forces $(d_1(t))$, mass $(M_2(t))$ and angular momentum distributions (J(t)).
- * Can be related to GPDs via sum rules:

$$\int x [H(x,\xi,t) + E(x,\xi,t)] dx = 2J(t)$$
$$\int xH(x,\xi,t) dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$

 Possibility of extracting pressure distributions! More data needed.

V. Burkert *L. El, F.-X. Girod*, Nature **557**, 396-399 (2018)

Proton DVCS @ 11 GeV

Experiment E12-06-119 *F. Sabatié et al.*

$$\begin{split} P_{beam} &= 85\% \\ L &= 10^{35} \ cm^{-2}s^{-1} \\ 1 &< Q^2 &< 10 \ GeV^2 \\ 0.1 &< x_B &< 0.65 \\ -t_{min} &< -t &< 2.5 \ GeV^2 \end{split}$$

Kinematics similar for all proton DVCS @ 11 GeV with CLAS12 experiments

Unpolarised liquid H₂ target:

- Statistical error: 1% 10% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 6 8%

A_{LU} characterised by imaginary parts of CFFs via: $F_1 H + \xi G_M \tilde{H} - \frac{t}{4M^2} E$

$$Q^{2} \frac{10}{9}$$

First experiment with CLAS12

Started this February!

Proton DVCS @ 11 GeV

Impact of CLAS12 unpolarised target proton-DVCS data on the extraction of Re(H) and Im(H).

Re(H)

(CLAS 6 GeV extraction H. Moutarde)

DVCS at lower energies with CLAS12

Experiment E12-16-010B *F.-X. Girod et al.*

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8 GeV
- Simultaneous fit to beam-spin and total cross-sections.
- * Rosenbluth separation of interference and $|T_{DVCS}|^2$ terms in the cross-section

* Scaling tests of the extracted CFFs

Model-dependent determination of the D-term in the Dispersion Relation between *Re* and *Im* parts of CFFs: sensitivity to Gravitational Form Factors. Deep Process Kinematics with 6.6, 8.8, and 11 GeV

Compare with measurements from Halls A and C: cross-check model and systematic uncertainties.

DVCS at lower energies with CLAS12

Projected extraction of CFFs (red) compared to generated values (green). Three curves on the Re(H) show three different scenarios for the D-term.

F.-X. Girod et al.

Neutron DVCS @ 11 GeV

Experiment E12-11-003 S. Niccolai, D. Sokhan et al.

1.2

0

CLAS12

1-003 *et al.* $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1H + \xi(F_1 + F_2)\tilde{H} - kF_2E\} d\phi$ Simulated statistical sample:

0.7

XB

Q² (GeV²) 6 նակակակակություն՝ նակակակ 5 _{\++++}+++++++ 4 _{╹╃╋╋╋}╋╋╋╋╋╋╋╋╋╋ 2 0.5 0.6 0.3 0.2 0.4

 $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}/\text{nucleon}$

 $e + d \rightarrow e' + \gamma + n + (p_s)$

CLAS12 + Forward Tagger + **Neutron Detector**

Scheduled: 2019

Beam-spin asymmetry in neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

* At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS *is* very sensitive to J_u, J_d

* Wide coverage needed!

Fixed kinematics: $x_B = 0.17$ $Q^2 = 2 \text{ GeV}^2$ $t = -0.4 \text{ GeV}^2$

Proton DVCS with a longitudinally polarised target

Experiment E12-06-119 *F. Sabatié et al.* A_{UL} characterised by imaginary parts of CFFs via: $F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2}E) - \frac{\xi t}{4M^2} F_2 \tilde{E} + ...$

Longitudinally polarised NH_3 target:

- Dynamic Nuclear Polarisation (DNP) of target material, cooled to 1K in a *He* evaporation cryostat.
- P_{proton} > 80%
- Statistical error: 2% 15% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 12%

 \longrightarrow Im(H_p)

Neutron DVCS with a longitudinally polarised target

Experiment E12-06-109A. S. Niccolai, D. Sokhan et al.

Longitudinally polarised ND₃ target:

- Dynamic Nuclear Polarisation (DNP) of target material in a cryostat shared with the NH₃ target.
- P_{deuteron} up to 50%
- Systematic uncertainties: ~ 12%

A_{UL} characterised by imaginary parts of CFFs via:

$$F_1\tilde{H} + \xi G_M(H + \frac{x_B}{2}E) - \frac{\xi t}{4M^2}F_2\tilde{E} + \dots$$

 \longrightarrow Im(H_n)

In combination with pDVCS, will allow flavourseparation of the H_q CFFs.

Tentative schedule: 2020

Proton DVCS with transversely polarised target at CLAS12

C12-12-010: with transversely polarised HD target (conditionally approved). *L. Elouardhiri et al.*

 $\Delta \sigma_{\text{UT}} \sim \cos \phi \operatorname{Im} \{k(F_2 H - F_1 E) + \dots \} d\phi$ Sens

Sensitivity to *Im(E)* for the proton.

Projected sensitivities to Im(H) CFF

Projections for *Im(H)* neutron and proton and up and down CFFs extracted from approved CLAS12 experiments.

VGG fit (M. Guidal)

Projected sensitivities to Im(E) CFF

Projections for *Im(E)* neutron and proton and up and down CFFs extracted from approved and conditionallyapproved CLAS12 experiments.

CLAS12

VGG fit (M. Guidal)

DVCS on 4He: CLAS12 with ALERT

Experiment E12-17-012:Measurement of BSA in coherent DVCS from aZ.-E. Meziani et al.4He target: partonic structure of nuclei.

* Spin 0 target, so at leading twist only one chiral-even GPD: **H**_A.

CLAS12 + ALERT: central recoil detector

Incoherent, spectator-tagged DVCS on ${}^{4}He$ and d.

Electron-Ion Collider: from the valence region to the quarkgluon sea

Motivations for the Electron-Ion Collider

* The only facility designed entirely for the study of hadron physics:

- What is the origin of nucleon mass? How is it generated from the almost massless quarks and massless gluons?
- * What is the quark-gluon origin of the nuclear force?
- How do hadrons and nuclei emerge from quarks and gluons? What is the nature of confinement?
- * 3D tomography of the nucleon: spacial and momentum distributions of partons from the valence quark region to the quark-gluon sea.

* Nucleon spin puzzle: decomposition of nucleon spin — contribution of gluons.

$$J_q = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

- * Structure functions for nucleons and nuclei, effect of nuclear medium on the propagation of a colour charge (hadronisation): insight into the EMC effect.
- * Search for gluon saturation: a new form of matter.

The list is NOT exhaustive...

Valence quarks

Jefferson Lab: fixed-target electron scattering $0.1 < x_B < 0.7$

Valence quarks

Jefferson Lab: fixed-target electron scattering $0.1 < x_B < 0.7$

Sea quarks

HERMES: fixed gas-target electron/positron scattering $0.02 < x_B < 0.3$

Valence quarks

Jefferson Lab: fixed-target electron scattering $0.1 < x_B < 0.7$

Sea quarks

HERMES: fixed gas-target electron/positron scattering $0.02 < x_B < 0.3$

COMPASS: fixed-target muon scattering $0.01 < x_B < 0.1$

Valence quarks

Jefferson Lab: fixed-target electron scattering $0.1 < x_B < 0.7$

Sea quarks

HERMES: fixed gas-target electron/positron scattering $0.02 < x_B < 0.3$

Derek Leinweber

COMPASS: fixed-target muon scattering $0.01 < x_B < 0.1$

The glue

ZEUS/H1: electron/ positron-proton collider

 $10^{-4} < x_B < 0.02$

Sea quarks

HERMES: fixed gas-target hermes electron/positron scattering $0.02 < x_B < 0.3$

COMPASS

COMPASS: fixed-target muon scattering $0.01 < x_B < 0.1$

The glue

Derek Leinweber

ZEUS/H1: electron/ positron-proton collider

 $10^{-4} < x_B < 0.02$

EIC: $10^{-4} < x_B < 0.3$

Luminosity 100 - 1000 times that of HERA

Jefferson Lab: fixed-target electron scattering $0.1 < x_B < 0.7$

2012 EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

EIC box includes different baseline designs

Electron-Ion Collider in the making

- 2007 Nuclear Physics Long Range Plan: "The EIC is embodying the vision of reaching the next QCD frontier"
- 2012 EIC White Paper, Eur. Phy. J. A 52, 9 (2016)
- 2015 Nuclear Physics Long Range Plan: "high-energy, high-luminosity polarised EIC as the highest priority for new facility construction following completion of FRIB"
- 2017-18 National Academies of Science (NAS) Review: "the science questions that an [EIC] would answer are central to completing our understanding of atomic nuclei"

"An EIC can **uniquely** address three profound questions about nucleons ... and how they are assembled to form the nuclei of atoms:

- How does the **mass** of the nucleon arise?
- How does the **spin** of the nucleon arise?
- What are the emergent properties of dense systems of gluons?" July 2018

Nucleon tomography: imaging quarks

EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

Nucleon tomography: imaging glue

* Gluon GPDs can be accessed through deeply virtual meson production (DVMP), eg: J/Ψ

EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

Courtesy of E. Aschenauer

- *How does the nuclear environment affect the distributions of quarks and gluons and their interactions inside nuclei?
- * How does nuclear matter respond to fast moving color charge passing through it?
- *Are there differences for light and heavy quarks?

EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

 $\mathsf{F}_2^{\mathrm{Ca}}/\mathsf{F}_2^{\mathrm{D}}$

х

Runaway glue

* Gluons are charged under colour: can generate (and absorb) other gluons.

* Nucleon probed at high energies, time dilation of strong interaction processes: gluons appear to live longer, emitting more and more gluons. Runaway growth! Runaway growth?

Saturation of gluon density

***** Runaway growth of glue at low-x:

"...A small color charge in isolation builds up a big color thundercloud...."

Courtesy of A. Deshpande

Can we reach saturation at EIC?

A powerful signature is diffractive cross-sections:

 $R \sim A^{1/3}$

Boost

Saw ~10% diffractive events at HERA.

EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

What do we want from the machine?

- * Parton imaging in 3D: high luminosity, 10^{33-34} cm⁻² s⁻¹ and above.
- Wide coverage of phase space from low to high x and up to high Q²: variable centre of mass energy.
- * Spin structure: high polarisation of electrons (0.8) and light nuclei (0.7).
- Studies of hadronisation, search for saturation at high gluon densities: a wide range of ion species up to the heaviest elements (p -> U).
- * Flavour tagging: large acceptance detectors with good PID capabilities.

What will we be able to do?

The two proposed sites

World's first polarized electron-proton/light ion and electron-Nucleus collider:

- * Polarized beams: e, p, d/³He
- * Wide range of nuclei
- * 20 100 (upgradable to 140) GeV
 variable CoM
- Polarisation ~ 70%

Two proposals:

- *** JLEIC**: 3 10 GeV e-, up to 100 GeV/u ions, Luminosity L ~ 10³⁴ cm⁻²s⁻¹
- *** eRHIC**: 5 18 GeV e⁻/e⁺, 50-275 GeV (p) \ and <100 GeV/u ions, L ~ 10³³ cm⁻²s⁻¹

eRHIC @ Brookhaven National

Design in flux: physics case evolving, machine and detector design developing.

JLEIC Reach

Courtesy of V. Morozov (JLab)

eRHIC Reach

Courtesy of E. Aschenauer (BNL)

Main detector designs

RICH EM calorimeters BEAST (BNL) TPC / silicon / microMegas Hadronic calorimeters

TOPside (Argonne)

The EIC Users Group

821 members, 173 Institutes, 30 Countries 475 experimentalists, 162 theorists, 142 accelerator-physicists, 42 other

and growing...

www.eicug.org

To conclude

- Success of the initial DVCS programme using CLAS at Jefferson Lab with 6 GeV
 beams measurements of the cross-section, beam- target- and double-spin asymmetries in proton DVCS, constraints on CFF fits, first steps towards nucleon tomography and pressure distributions within nucleons.
- *JLab 12 GeV upgrade: 11 GeV to Hall B with CLAS12, opens a new region of phase space — high luminosity, high precision. DVCS measurements are a flagship part of the new programme, approved proposals aimed at greatly constraining CFF fits in a global analysis:
 - \bullet extraction of H and E from proton and neutron DVCS,
 - flavour separation of CFFs,
 - separation of pure DVCS amplitude from the interference term,
 - measurements at higher precision and statistics,
 - sensitivity to higher-twist contributions.
- * The EIC will be the first electron-ion collider providing polarised electrons and light ions, and unpolarised heavy ions. Two possible sites: JLab and BNL.
- * Combing a large variable centre-of-mass energy reach and an extremely high luminosity, it will allow measurements of very low cross-section processes from the valence quark region to the quark-gluon sea.
- NAS Review report (July 2018) is extremely positive expect CD0 stage (establishing mission need) ~ 2019, construction in the 2020s.

Thank you!

The DVCS/BH amplitude

$$\mathcal{T}^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} \longleftarrow \frac{\text{Interference term}}{\text{for DVCS/BH}}$$
$$|\mathcal{T}_{\rm BH}|^2 = \frac{e^6}{x_B^2 y^2 (1+\epsilon^2)^2 t \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} [c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos n\phi + s_1^{\rm BH} \sin \phi]$$

$$|\mathcal{T}_{\rm DVCS}|^2 = \frac{e^6}{y^2 \mathcal{Q}^2} \{ c_0^{\rm DVCS} + \sum_{n=1}^2 [c_n^{\rm DVCS} \cos n\phi \, + \, s_n^{\rm DVCS} \sin n\phi] \}$$

Intermediate lepton propagators

From asymmetries to CFFs

At leading twist, beam-spin asymmetry (BSA) can be expressed as:

$$A_{\rm LU}(\phi) \sim \frac{s_{1,\rm unp}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + \dots) \cos \phi \dots} \quad higher-twist \ terms\dots$$

The leading coefficient is related to the imaginary part of the Compton Form Factors:

$$s_{1,\text{unp}}^{\mathcal{I}} \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]$$

At CLAS kinematics, this dominates F_1, F_2 : Dirac,
Pauli form factors

Likewise, for the target-spin asymmetry (TSA):

$$\begin{aligned} A_{\rm UL}(\phi) &\sim \frac{s_{1,\rm LP}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + ...) \cos \phi + ...} \\ s_{1,\rm LP} &\propto \Im [F_1 \widehat{\mathcal{H}} + \xi (F_1 + F_2) \widehat{\mathcal{H}} + \frac{x_B}{2} \mathcal{E}) - \xi (\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathcal{E}}] \\ At CLAS kinematics, these CFFs dominate \end{aligned}$$

* Obtain coefficients from fitting the phidependence of the asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

From asymmetries to CFFs

At leading twist, beam-spin asymmetry (BSA) can be expressed as:

$$A_{\rm LU}(\phi) \sim \frac{s_{1,\rm unp}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + \dots) \cos \phi \dots} \quad higher-twist \ terms\dots$$

The leading coefficient is related to the imaginary part of the Compton Form Factors:

$$s_{1,\text{unp}}^{\mathcal{I}} \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]$$

At CLAS kinematics, this dominates F_1, F_2 : Dirac,
Pauli form factors

Likewise, for the target-spin asymmetry (TSA):

$$\begin{aligned} A_{\rm UL}(\phi) &\sim \frac{s_{1,\rm LP}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + ...) \cos \phi + ...} \\ s_{1,\rm LP} &\propto \Im [F_1 \widehat{\mathcal{H}} + \xi (F_1 + F_2) \widehat{\mathcal{H}} + \frac{x_B}{2} \mathcal{E}) - \xi (\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathcal{E}}] \\ At CLAS kinematics, these CFFs dominate \end{aligned}$$

* Obtain coefficients from fitting the phidependence of the asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

Double-spin asymmetry

At leading twist, double-spin asymmetry (DSA) can be expressed as:

$$A_{\rm LL}(\phi) \sim \frac{c_{0,\rm LP}^{\rm BH} + c_{0,\rm LP}^{\mathcal{I}} + (c_{1,\rm LP}^{\rm BH} + c_{1,\rm LP}^{\mathcal{I}})\cos\phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + ...)\cos\phi...}$$

$$c_{0,\mathrm{LP}}^{\mathcal{I}}, c_{1,\mathrm{LP}}^{\mathcal{I}} \propto \Re \left[F_1 \widehat{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_B}{2} \mathcal{E}) - \xi (\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathcal{E}}\right]$$

At CLAS kinematics, leading-twist dominance of these CFFs

***** Fit function for the phi-dependence of the asymmetry:

 $\frac{\kappa_{\rm LL} + \lambda_{\rm LL}\cos\phi}{1 + \beta\cos\phi}$

Shares denominator with BSA and TSA! If measurements at same kinematics, can do a simultaneous fit.

Jefferson Lab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility.

- **★** Energy up to ∼6 GeV
- * Energy resolution $\delta E/E_e \sim 10^{-5}$

***** Longitudinal electron polarisation up to ~85%

Hall A:

* High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity.

Hall B: CLAS

 Very large acceptance, detector array for multiparticle final states.

Hall C:

Two movable spectrometer arms, well-defined acceptance, high luminosity

JLab @ 12 GeV

High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity, large installation experiments.

9 GeV tagged polarised photons, full acceptance

Hall B: CLAS12

Hall C

Two movable high momentum spectrometers, welldefined acceptance, very high luminosity.

Very large acceptance, high luminosity.

DVCS in Hall A @ 11 GeV

Detect photon in PbF₂ calorimeter: < 3% energy resolution

Reconstruct recoiling proton through missing mass.

DVCS in Hall C @ 11 GeV

Detect electron with (Super) High Momentum Spectrometer, (S)HMS.

Detect photon in PbWO₄ calorimeter.

Sweeping magnet to reduce backgrounds in calorimeter.

Reconstruct recoiling proton through missing mass.

First DVCS cross-sections in valence region

* Hall A, ran in 2004, high precision, narrow kinematic range. Q²: 1.5 - 2.3 GeV², $x_B = 0.36$.

 CFFs show scaling in DVCS: leading twist (twist-2) dominance at this moderate Q².

- * Strong deviation of DVCS cross-section from BH: extraction of $|T_{DVCS}|^2$ amplitude as well as interference terms.
- * Separation of real part of the twist-2 interference term and the $|T_{DVCS}|^2$ amplitude is very sensitive to relative crosssections at $\phi = 0^\circ$ and $\phi = 180^\circ$.

M. Defurne et al, PRC 92 (2015) 055202.

First DVCS cross-sections in valence region

$$x_B = 0.36, Q^2 = 1.9 \; GeV^2, -t = 0.32 \; GeV^2$$

 High precision of the data: sensitivity to subtle differences in model predictions.

VGG model: Vanderhaeghen, Guichon, Guidal KMS model: Kroll, Moutarde, Sabatié KM model: Kumericki, Mueller

TMC: kinematic twist-4 target-mass and finite-t corrections, calculated for proton DVCS and estimated for KMS12.

- * KMS parameters tuned on very low x_B mesonproduction data: not adapted to valence quarks.
 - \rightarrow

TMC*: TMC extracted from the KMS12 model and applied to KM10a.

*TMC improve agreement for KM10a model, especially at $\phi = 180^{\circ}$. Higher-twist effects?

The devil is in the detail...

M. Defurne et al, PRC 92 (2015) 055202.

Here comes the twist...

* Twist: powers of $\frac{1}{\sqrt{Q^2}}$ in the DVCS amplitude. Leading-twist (LT) is twist-2.

- ***** Order: introduces powers of α_s
- LO requires Q² >> M² (M: target mass)
 Bold assumption for JLab 6 GeV kinematics!
- CFFs can be classified according to real and virtual photon helicity:
- helicity of real produced photon \mathcal{F}_{++} helicity of virtual incoming photon
 - \odot Helicity-conserved CFFs \mathcal{F}_{++}
 - Helicity-flip (transverse) \mathcal{F}_{-+}
 - \odot Longitudinal to transverse flip \mathcal{F}_{0+}

- ***** CFFs contributing to the scattering amplitude:
 - \odot LT in LO: only \mathcal{F}_{++}
 - LT in NLO: both \mathcal{F}_{++} and \mathcal{F}_{-+}
 - \odot Twist-3: \mathcal{F}_{0+}

Here comes the twist...

- * At finite Q^2 and non-zero *t* there's ambiguity in defining the light-cone axis:
 - Traditional GPD phenomenology uses the Belitsky convention, in plane of q and P:
 A. Belitsky *et al*, *Nucl. Phys. B878* (2014), 214
 - New, Braun definition using q and q': more natural.
 V. Braun *et al*, *Phys. Rev. D89* (2014), 074022

Reformulating CFFs in this frame absorbs most kinematic power corrections (TMC):

B

CFFs

Assuming LO and LT in the Braun frame leaves higher-twist, higher-order contributions in the Belitsky frame, scaled by kinematic factors χ and χ_0 .

Non-negligible at the Q^2 and x_B of the Hall A cross-section measurement!

M. Defurne et al, Nature Communications 8 (2017) 1408.

Hints of higher twist or higher orders

E07-007: Hall A experiment to measure helicity-dependent and -independent crosssections at two beam energies and constant x_B and t.

Simultaneous fit to cross-sections at both energies and three values of Q² using only leading twist and leading order (LT/LO) do not describe the cross-sections fully: higher twist/order effects?

Using Braun's decomposition, \mathbb{H}_{-+} and \mathbb{H}_{0+} can't be neglected.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Hints of higher twist or higher orders

* Including either higher order or higher twist effects (HT) improves the match with data:

Higher-order and / or higher-twist terms are important! A glimpse of gluons.

Wider range of beam energy needed to identify the dominant effect — JLab at 11 GeV.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Rosenbluth separation of DVCS² and BH-DVCS terms

* Generalised Rosenbluth separation of the DVCS² and the BH-DVCS interference terms in the cross-section is possible but NLO and/or higher-twist required.

- Significant differences
 between pure DVCS and
 interference contributions.
- Helicity-dependent crosssection has a sizeable DVCS² contribution in the higher-twist scenario.
- Separation of HT and NLO effects requires scans across wider ranges of Q² and beam energy: JLab12!

M. Defurne et al, Nature Communications 8 (2017) 1408.

DVCS Cross-sections: Halls A and C

Experiments: **E12-06-114** (Hall A, 100 days), **E12-13-010** (Hall C, 53 days)

C. Muñoz Camacho et al., C. Hyde et al.

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8, 11 GeV
- Scans of Q^2 at fixed x_B .
- Hall A: aim for absolute crosssections with 4% relative precision.

* Azimuthal, energy and helicity dependencies of crosssection to separate $|T_{DVCS}|^2$ and interference contributions in a wide kinematic coverage.

* Separate *Re* and *Im* parts of the DVCS amplitude.

Hall A started taking data last spring!

Interpretations of the nucleon

What do spatial distributions tell us?

Courtesy of A. Deshpande

Bag Model: Gluon field distribution is wider than the fast moving quarks.Gluon radius > Charge Radius

Constituent Quark Model: Gluons and sea quarks hide inside massive quarks. Gluon radius ~ Charge Radius

Lattice Gauge theory (with slow moving quarks), gluons more concentrated inside the quarks: Gluon radius < Charge Radius

Need transverse images of the quarks and gluons in confinement

JLEIC

- *Use CEBAF as full-energy injector (polarisation ~85%). Addition of an ion source, booster, and a figure-of-8 collider ring for electrons and ions.
- High luminosity reached through small beam size (small emittance through cooling and low bunch charge with high repetition).
- *High polarisation through figure-of-8 design (net spin precession is zero, spin controlled with small magnets)

eRHIC

- Exploit current 275 GeV proton collider by adding a 5-18 GeV electron storage ring in the same tunnel.
- * High luminosity requires novel technologies of hadron cooling — currently most promising is micro-bunched electron-beam cooling with 2 plasma amplification stages.

- * 29 141 GeV CoM energies
- Polarised electron source and 400 MeV SLAC-type injector LINAC, 10 nA.
- * Harmonic spin matching for higher polarisation (~80%).
- Highest risk in the design: hadron cooling for high luminosity (factor of ~3).