#### Electrons for Neutrinos: How electron scattering data can improve oscillation experiments

Florian Hauenstein Old Dominion University 09 November 2018



# Collaboration

- Old Dominion University
  - Larry Weinstein
  - Florian Hauenstein (PD)
  - Mariana Khachatryan (grad)
- MIT
  - Or Hen
  - Adi Ashkenazi (PD)
  - Afroditi Papdolopou (grad)
- Jefferson Lab
  - Stepan Stepanyan
- Tel Aviv U
  - Eli Piasetzky

- Michigan State
  - Kendall Mahn
  - Luke Pickering (PD)
- FermiLab
  - Minerba Betancourt (PD)
- Pitt
  - Steve Dytman
- York University, UK
  - Dan Watts

#### **Neutrino Interaction**

- $\begin{array}{c} CC \ QE \\ \hline v_l \\ \hline v_l \\ \hline v_l + n \rightarrow l^- + p \\ \hline \overline{v}_l + p \rightarrow l^+ + n \end{array}$
- Weak eigenstates ≠ mass eigenstates
- Neutrino mixing PNMS (Pontecorvo-Maki-Nakagawa-Sakata) matrix

$$egin{bmatrix} 
u_e \ 
u_\mu \ 
u_ au \end{bmatrix} = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} egin{bmatrix} 
u_1 \ 
u_2 \ 
u_2 \ 
u_3 \end{bmatrix}$$

#### Oscillations

Weak interaction

#### **Neutrino Oscillations**



#### **Incoming Energy Reconstruction**



Cherenkov detectors (T2K,..)

- Assuming Quasielastic (QE) interaction
- Using solely the final state lepton

$$E_{QE} = \frac{2M\epsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos\theta)}$$



#### Tracking detectors (DUNE,..)

- Detect outgoing hadron and lepton
- Need good hadronic resolution

$$E_{\rm cal} = E_l + E_p^{\rm kin} + \epsilon$$

for (e,e'p)

#### $\epsilon\,$ is the nucleon separation energy $^{\sim}\,20~MeV$

F. Hauenstein, SESAPS

#### Osciallations need E<sub>v</sub> reconstruction



6

#### Oscillations need E<sub>v</sub> reconstruction

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4E_{\nu}}\right)$$



#### Oscillations need E<sub>v</sub> reconstruction

$$P(v_{\mu} \to v_{x}) = \sin^{2}(2\theta) \times \sin^{2}\left(\frac{\Delta m^{2}L}{4 E_{v} real}\right)$$



### **Energy reconstruction**

Wide neutrino
 beam distribution



 Reconstruction requires knowledge of the nuclear interactions -> event generators



#### Systematic Effects by Nuclear Models



Events generated with GiBUU, reconstruct with Genie

Events generated with GiBUU, reconstruct with GiBUU

→ Imperfect event generators
→ systematic errors!

P. Coloma et. al, Phys. Rev. D 89, 073015 (2014)

F. Hauenstein, ODU, SESAPS

# Use electron scattering to improve models

- Known incident energy
- High intensity
- Similar interaction with nuclei
  - Single boson exchange
  - CC Weak current [vector plus axial] e<sup>-</sup>–N QE

• 
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

- EM current [vector]
  - $j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$
- Same nuclear physics





#### **Nuclear Physics**





#### **Nuclear Physics**



Plus pion production ...



- Large amount of electron scattering data available
- Known beam energy
- Analyze electron data as if it is "Neutrino data"
  - Select specific interaction (e,e') or (e,e'p)
  - Scale electron data using Mott cross section
  - ➤ Test energy reconstruction
  - Compare with event generators
  - > As a start focus on quasi-elastic (QE) scattering

#### CLAS6 at Jefferson Lab

- Large (~ $2\pi$ ) acceptance
- Open electron trigger
- Charged hadron threshold
  - $-P_{p} > 300 \text{ MeV/c}$
  - $-P_{\pi^{+/-}} > 150 \text{ MeV/c}$



#### CLAS6 coverage









#### CLAS6 E2a Data

Targets:

- <sup>3</sup>He
- <sup>4</sup>He
- <sup>12</sup>C
- <sup>56</sup>Fe

Energies:

- 1.1 GeV
- 2.2 GeV
- 4.4 GeV



# Reconstructing the initial energy

- Choose 0π events to enhance the Quasielastic (QE) sample
  - Subtract "undetected pions"
- Reconstruct the incident lepton energy:

$$-E_{QE} = \frac{2M_N\epsilon + 2M_NE_l - m_l^2}{2(M_N - E_l + k_l\cos\theta_l)}$$

- $\epsilon$ : nucleon separation energy,  $M_N$  nucleon mass
- $\{m_l, E_l, k_l, \theta_l\}$  scattered lepton mass, energy, momentum and angle
- broadened by nucleon fermi motion

$$-E_{cal} = E_e + T_p + \epsilon$$
 [for (e,e'p)]

#### Reconstructing the Incident Energy



F. Hauenstein, ODU, SESAPS

# Reconstruction Incoming Energy worse for higher masses



#### **Reconstruction Incoming Energy** worse for higher beam energies <sup>56</sup>Fe



<sup>22</sup> 

# Energy reconstruction dependence on $P^{\perp}$



#### **Event Generators**

- Bad reconstruction is OK if the generator describes reality
  - ightarrow Can be checked by comparing with data
- Several generators used in neutrino experiments
  - Neut (T2K)
  - NuWro (MicroBoone, Minerva)
  - GiBUU (KM3Net, ...)
  - GENIE (MicroBoone, Minerva, DUNE,...)



#### **Data-Genie Comparisons**



#### Data-Genie Comparisons - QE peak

C(e,e'p) 2.26 GeV, 0.8 < x < 1.2





F. Hauenstein, ODU, SESAPS



Peaks in same location

#### Summary Data-Genie: E<sub>beam</sub> Reconstruction

| Fe       | e⁻ Data | $\nu$ GENIE |
|----------|---------|-------------|
| 2.26 GeV | 26%     | 62%         |
| 4.46 GeV | 14%     | 62%         |

#### Fraction of Fe(e, e'p) events with $E_{Cal}$ within 5% of $E_{beam}$

### Possible effect on DUNE Oscillation



- (Chris Marshall, LBNL)
- Proof of principle to show potential impact
- Threw events with vA Genie
  - Reconstructed with vA Neut or eA data
- Compared  $E_{rec}$  for eA to  $E_{rec}$  for vA
- Used 2.26 GeV eA E<sub>rec</sub> for all incident energies



#### CLAS12

- ~  $4\pi$  acceptance
- forward detector (8 40°)
  - Toroidal magnetic field
- Hermetic central detector (40 – 135°)
  - 5 T solenoidal field
- Backward Angle Neutron Detector
- x10 larger luminosity than CLAS 6



- 45 beam days approved with an A rating for
  - 1.1, 2.2, 4.4, and 6.6 GeV beam energies
  - d, He, C, O, Ar, and Sn targets



- Electron scattering can contribute dramatically to neutrino experiments
  - Similar physics
  - Lots of data available
  - Lots more to come
- Worse energy reconstruction for higher beam momenta and larger p<sub>T</sub>
- Disagreement between data and GENIE
- Impact on neutrino oscillation parameters



#### Backup

#### Data-Genie Comparisons - E<sub>beam</sub> Reconstruction

$$E_{cal} = E_e + T_p + \epsilon$$

![](_page_34_Figure_2.jpeg)

#### **Background Subtraction**

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p $\pi$ ) events,
- 2. Rotate  $\pi$  around q to determine its acceptance,
- 3. Subtract (e,e'p $\pi$ ) contributions

![](_page_35_Picture_7.jpeg)

#### **Background Subtraction**

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

Data Driven Correction:

- 1. Use measured (e,e'p $\pi$ ) events,
- 2. Rotate  $\pi$  around q to determine its acceptance,
- 3. Subtract (e,e'p $\pi$ ) contributions
- 4. Do the same for 2p, 3p, 2p+  $\pi$  etc.

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

#### **Background Subtraction**

Non-QE interactions lead to multi hadron final states.

Gaps in CLAS acceptance will make them look like (e,e'p) events.

![](_page_37_Figure_3.jpeg)

# We're Also Improving Genie

- 1. Corrected expression for Mott cross section in QE
- 2. MEC/2p2h
  - 1. Added boost back to lab frame
  - 2. Corrected mass for cluster of particles
  - 3. Corrected Form Factors
- 3. Resonance
  - 1. Replaced old calculation with GSL Minimizer (now gives correct peak location)
  - 2. Switched to Berger-Seghal model
  - 3. Used corrected coupling constant for EM interactions
- 4. Nucleon momentum distributions
  - 1. Switched to Local Fermi Gas Model

Beginning work on NuWro and GiBUU.

Consulting with the relevant experts on each code.