From JLab @12 GeV to the Electron Ion Collider:
 Generalized Parton Distributions

Charles Hyde* Old Dominion University
*Funding from DOE

USERS

User Group Workshop and Annual Meeting
JUNE 18-20, 2018
JEFFERSON LAB • NEWPORT NEWS, VA

Program Includes:

- From JLab 12 GeV to the EIC
- Featured Speakers:
-A. Aprahamian
- Imaging: M. Diehl, H. Gao, C. Hyde,
- QCD in nuclei: T. Mineeva, A. Schmidt, C. Weiss, - Spectroscopy: S. Dobb, T. Skwarnicki, D. Wilson.
- Reports from Laboratory Management and Funding Agencies
- User Group Business Meeting
- Talks from JSA Thesis and Postdoc Prize winners
- Registration and lunch for students are covered for the duration of the User meeting.
Student Poster Competition
- $1^{\text {st }}$ Place: $\$ 500.00^{*}$
- $2^{\text {nd }}$ Place: $\$ 250.00^{*}$
- 3rd Place: \$100.00*
*Each winner will additionally receive $\$ 500$ in
travel support to present their work at a meeting
of their choosing.
POSTER ABSTRACT DEADLINE: Friday, June 8, 2018
 http://conferences.jlab.org/ugm

JLUO

Deep Virtual Exclusive Scattering (DVES)

- Fully exclusive final states
- ep \rightarrow ep γ, ep \rightarrow e N meson - ed \rightarrow epn $\boldsymbol{\gamma}$, etc.
- Nuclei
- ed \rightarrow ed γ, mesons...
- $\mathrm{e}^{4} \mathrm{He} \rightarrow \mathrm{e}^{4} \mathrm{He} \boldsymbol{\gamma}$...
- Time-like Compton Scattering (TCS)
- $\gamma p \rightarrow I^{+} I^{-} p$
- Polarized electrons, polarized target nuclei
NH_{3} DNP-CLAS12

Polarized DVES (JLab $12 \rightarrow$ EIC)

- JLab at 12 GeV
- Polarized electrons
- Longitudinal polarized p, d
- $\mathrm{NH}_{3}, \mathrm{ND}_{3}, \mathrm{CLAS12}$
- NH_{3}, Hall C: Wide Angle C.S.
- Longitudinal \& Transverse polarized ${ }^{3} \mathrm{He}$ (Hall A/C)
- GPD program with SOLiD
- Transverse polarized ${H D_{\text {ice }}}$
- (test-beam studies in prep.)
- Transverse polarized NH_{3}
- Time-like CS in Hall C Proposal PAC 46
- Electron Ion Collider
- Polarized electrons,
- Polarized p, d, ${ }^{3} \mathrm{He}, \mathrm{Li}$
- Transverse \& Longitudinal
- Polarized deuterons now in eRHIC planning
- Zero target dilution
- Spectators boosted by beam γ-value
- Precision ion polarimetry remains a challenging \& critical R\&D topic

Bethe-Heitler (BH) and Virtual Compton Scattering (VCS) $e p \rightarrow e p \gamma$

$\Delta^{\mu}=\left(p^{\prime}-p\right)^{\mu}$
$t=\left(p^{\prime}-p\right)^{2}=\Delta^{2}$

- BH-VCS interference

- Access to VCS amplitude, linear in GPDs

QCD Factorization of DVCS (Co-Linear) $e p \rightarrow e p \gamma$

$$
G P D_{f}\left(x, \xi, t=\Delta^{2}\right)
$$

$G P D_{9}\left(x, \xi, t=\Delta^{2}\right)$

$$
\xi=\frac{-\left(q+q^{\prime}\right)^{2}}{2\left(q+q^{\prime}\right) \cdot P} \xrightarrow[\Delta^{2} \ll Q^{2}]{ } \frac{x_{B}}{2-x_{B}}
$$

- SCHC: Transversely polarized virtual photons dominate to $O(1 / Q)$

Poincaré Invariance \& Spatial Imaging

- Physics is fully Poincaré invariant
- High energy reactions (and target-polarization states) select preferred frames:
- DIS: q, P anti-collinear ("DIS" frame, $\mathrm{P}=$ initial proton)
- DVCS, DVMP:
- DIS frame
- $q+q^{\prime}, \mathbf{P}$ anti-collinear
- $\mathbf{q}+\mathbf{q}^{\prime}, \mathbf{P}+\mathbf{P}^{\prime}$ anti-collinear ("Symmetrized frame")
- All equivalent as $\Delta^{2} / Q^{2} \rightarrow 0$
- Magnitude and form of "higher-twist" = qqg... correlations depend upon frame at finite $Q^{2}, \Delta^{2} / Q^{2}$

Spatial Imaging at finite skewness (ξ)

- DVES reference frame defines light-like vectors n^{μ}, \tilde{n}^{μ} :
- $n^{2}=\tilde{n}^{2}=0, \quad$ - $n \cdot \tilde{n}=1$
- Lorentz invariant definition of Δ_{\perp} :

$$
\begin{aligned}
& \Delta_{\perp}^{2}=2(\Delta \cdot n)(\Delta \cdot \tilde{n})-\Delta^{2} \\
& \Delta_{\perp}^{2} \rightarrow-\Delta^{2} \text { as } \xi \rightarrow 0
\end{aligned}
$$

- $\xi=0: \operatorname{GPD}\left(x, 0, \Delta^{2} ; Q^{2}\right)=$ parton density at resolution scale Q^{2}
- $\boldsymbol{\Delta}_{\perp}$ Fourier conjugate to $\mathbf{b}=$ trans. distance from target CoM
- $x=\xi$: Measured by Im part of DVES amplitudes
- $\operatorname{GPD}\left(\xi, \xi, \Delta^{2} ; \mathrm{Q}^{2}\right)=$ parton transition amplitude $(0 \rightarrow 2 \xi)$
- Δ_{\perp} Fourier conjugate to $r_{\perp}=$ trans. distance from CoM of target spectators.

CLAS: H(ė, ép $\boldsymbol{\gamma})$

- H.Jo, et al. [CLAS], PRL 115 (2015)

- Constrained Fits to $\mathrm{Re}, \operatorname{Im}[\mathrm{H}(\mathrm{x}, \mathrm{t})]$

- $\operatorname{Im}[H(x, t)] \sim e^{b(x) t}$
$\rightarrow b$ decreases as x_{B} increases
\rightarrow Proton is shrinking! (model dependent)

CLAS: ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma} \alpha\right)$

M.Hattawy et al., PRL 119 (2017)

- Radial TPC for recoil α
- 250 mm z $\otimes 160 \mathrm{~mm} \varnothing$

- Only one GPD: $H(x, \xi, t)$
- Compton Form Factor $\mathcal{H}(\xi, t)$

$$
A_{L U}(\phi)=\frac{\alpha_{0}(\phi) \Im\left(\mathcal{H}_{A}\right)}{\alpha_{1}(\phi)+\alpha_{2}(\phi) \Re\left(\mathcal{H}_{A}\right)+\alpha_{3}(\phi)\left[\Re\left(\mathcal{H}_{A}\right)^{2}+\Im\left(\mathcal{H}_{A}\right)^{2}\right]}
$$

CLAS: Longitudinally Polarized Protons Target-Spin Asymmetries

Q^{2},

Hall A: H(e, é $\boldsymbol{\gamma})$
$x_{B}=0.36, \mathrm{Q}^{2}=1.5,1.75,2.0 \mathrm{GeV}^{2}$ M.Defurne et al., "A Glimpse of Gluons", Nat. Comm. 8 (2017)
$\rightarrow \mathrm{Q}^{2}=1.75$

- $E_{e}=4.455$ (left), 5.55 (right) GeV
$\rightarrow \mathrm{d}^{4} \sigma /\left[\mathrm{dQ}^{2} \mathrm{dx}_{\mathrm{B}} \mathrm{dtd} \phi_{\gamma \gamma}\right]$
$\Delta^{4} \sigma=d^{4} \sigma(h=+)-d^{4} \sigma(-)$
\downarrow Solid Grey Line = KM2015
- Dashed: Leading Twist / Leading Order (LT/LO) fit with V. Braun Kinematic Twist-4 constrained by LO/LT:
\rightarrow Global fit at each $-t$:
$3 \otimes Q^{2} \& 2 \otimes E_{e}$
\rightarrow Poor χ^{2}

Two Fit-Scenarios

 [Using V. Braun et al, PRD 89, 074022 (2014)]$\mathbb{H}(x, \xi, t), \quad \widetilde{\mathbb{H}}(x, \xi, t)$

- LO/LT + Twist-3 + Kinematic Twist-4

-LO+ NLO (gluon transversity) + Kinematic Twist-4

'Global' Fit:

$\mathrm{Q}^{2}=1.5,1.75,2.0 \mathrm{GeV}^{2} \& \mathrm{E}_{\mathrm{e}}=4.45,5.55 \mathrm{GeV}$
Displayed at $\mathrm{Q}^{2}=1.75$ for $-t=0.030 \mathrm{GeV}^{2}$

Identical fit (blue \uparrow) for either: Twist-3 or NLO (gluon) scenarios. Both fits have Kinematic Twist-4 contribution constrained from Twist-2 component of fit

E07-007 `Global' Fit

 Separations of Re, Im[DVCS $\left.{ }^{\dagger} B H\right]$, \mid DVCS $\left.\right|^{2}$$-t=0.030 \mathrm{GeV}^{2}$ (of three t-bins): Displayed at $\mathrm{Q}^{2}=1.75$

Total Fit (previous slide blue)
Sum of Pink (LO+NLO)
OR
Sum of Cyan (LO+HT)

Model dependence, but full measurement of interference: amplitude \& phase

Pseudo-Scalars

- JLab Hall A
- L/T separation for $H\left(e, e^{\prime} \pi^{0}\right) p$ and $D\left(e, e^{\prime} \pi^{0}\right)$ pn
- $\sigma_{T} \gg \sigma_{L}$
- JLab CLAS
- $\sigma_{T}+\epsilon \sigma_{L}$ for $\mathrm{H}\left(e, e^{\prime} p \pi^{0}\right), \mathrm{H}\left(e, e^{\prime} p \eta\right)$
- $\sigma_{T}+\epsilon \sigma_{L} \gg \sigma_{L}$ [naïve collinear factorization].
- Twist-3 helicity flip meson Distribution Amplitude enhanced by $\chi \mathrm{SB} \rightarrow$ coupling to nucleon transversity GPD: $\left\langle\pi\left(q^{\prime}\right)\right| \bar{\psi} \sigma^{+-} \psi|0\rangle \otimes \mathcal{H}_{T}$
- S. Goloskokov, P. Kroll, Eur. Phys. J. A 47, 112 (2011).
- S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D 79, 054014 (2009).

DVMP: π^{0}, η

@ 6 GeV

M.Defurne et al [Hall A] PRL 117 (2016)

Solid Curves: S. Goloskokov and P. Kroll, Eur.
Phys. J. A 47, 112 (2011).
Dashed: G. R. Goldstein, J. O. Hernandez, and
S. Liuti, Phys. Rev. D 84, 034007 (2011).

[Flavor \otimes Spin]-Structure Separation

- Hall A: D $\left(e, e^{\prime} \pi^{0}\right) p n-H\left(e, e^{\prime} \pi^{0}\right) p$,
- M.Mazouz et al PRL 118 (2017)
- CLAS: $\mathrm{H}\left(e, e^{\prime} \pi^{0}\right) p \pm \mathrm{H}\left(e, e^{\prime} \eta\right) p$
- I. Bedlinskiy PRC 95 (2017)
- V. Kubarovsky SPIN2014

$$
\frac{d \sigma_{T}}{d t}=\Lambda\left[\left(1-\xi^{2}\right)\left|\left\langle H_{T}\right\rangle\right|^{2}-\frac{t^{\prime}}{8 M^{2}}\left|\left\langle\bar{E}_{T}\right\rangle\right|^{2}\right],
$$

$$
\frac{d \sigma_{T T}}{d t}=\Lambda \frac{t^{\prime}}{8 M^{2}}\left|\left\langle\bar{E}_{T}\right\rangle\right|^{2} .
$$

$\pi^{0} \quad\left|\left\langle H_{T}^{p, n}\right\rangle\right|^{2}=\frac{1}{2}\left|\frac{2}{3}\left\langle H_{T}^{u, d}\right\rangle+\frac{1}{3}\left\langle H_{T}^{d, u}\right\rangle\right|^{2}$,
$\eta \quad\left|\left\langle H_{T}^{p, n}\right\rangle\right|^{2}=\frac{1}{2}\left|\frac{2}{3}\left\langle H_{T}^{u, d}\right\rangle-\frac{1}{3}\left\langle H_{T}^{d, u}\right\rangle\right|^{2}$,

CLAS

$Q^{2}=2.2 \mathrm{GeV}^{2}$

$$
x_{B j}=0.27
$$

Assume $\sigma_{T} \gg \sigma_{L}$

On to $12(11) 10.6 \mathrm{GeV}$!

Hall C:NPS
NSF MRI + JLab
PbWO4 + Sweep magnet

CLAS12 First Physics Run: Jan 11-May 72018

- 0.3\% of data analyzed.
- Calibrations in continuous progress

$\int x[H(x, \xi, t)-H(x, 0, t)] d x=\frac{4}{5} \xi^{2} d_{1}(t)$
V.Burkert, L.Elourdrhiri, F.X.Girod, Nature 557 (2018) 396
- More data in Fall 2018

Hall A DVCS, Deep π^{0}

DVCS3 Kinematic_Coverage

Hall A: Deep $\pi^{0}, E_{e}=7.4 \mathrm{GeV}$

- H(e,e' $\gamma \gamma) \mathrm{X}$

projections for protons

$\mathrm{e} \overrightarrow{\mathrm{p}} \rightarrow \mathrm{ep} \gamma$

Dynamically polarized target $\mathrm{NH}_{3}, \mathrm{ND}_{3}$

$$
\Delta \sigma_{U L} \sim \sin \phi\left\{F_{1} \widetilde{H}+\xi\left(F_{1}+F_{2}\right)(H+\xi /(1+\xi) E)\right\} d \phi
$$

$$
X_{B}=0.24 \quad X_{B}=0.36 \quad X_{B}=0.49
$$

CLAS 12 TCS

- Ratio of $e^{+} e^{-} \rightarrow$ Hadrons / di-muons versus $e^{+} e^{-}$mass

Statistical uncertainties for 100 days at a luminosity of $10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Two bins in s
- Lowest bin in $\mathrm{Q}^{\prime 2}$
- t-dependence of Interference observable
- Illustrative GPD models

Leading Order (LO) QCD Factorization of DVES

Gluon and quark GPDs enter to same order in α_{s}.
SCHC: $\quad \sigma_{\mathrm{L}} \sim\left[\mathrm{Q}^{2}\right]^{-3}$
Spin/Flavor selectivity

[Gluon GPDs in
Diffractive channels only]

Vector mesons

- ϕ : JLab12 kinematics, predictions:
- Gluon GPDs $+\leq 20 \%$ gluon ${ }^{*}$ strange
- J/Psi: seen in Hall D.
- Threshold production \rightarrow large $-t_{\text {min }}$.
- CLAS12 search for LHCb J/ $\boldsymbol{\psi} \otimes p$ states

- ρ, ω
- Slow approach to longitudinal dominance in HERA ρ data
- Unexplained enhancement in ρ production at low W^{2} in CLAS data.
- Helicity violating amplitudes \rightarrow Transversity GPDs à la pseudo-scalars?

- ω : strong violation of SCHC @ CLAS

$e p \rightarrow e p \phi$

ep \rightarrow ep ϕ

$Q^{2}=4 \mathrm{GeV}^{2} \quad \operatorname{E665}(\Delta), \operatorname{HERMES}(\bullet)$, CORNELL ($\left.\mathbf{\Delta}\right)$
ZEUS (■), H1 (■), CLAS (○)
- Calculations of S. Goloskokov, P. Kroll EPJC 50 (2007) 829
- Vector and pseudo-scalar mesons show evidence for Hard/Soft separation \rightarrow [nucleon structure] $\otimes\left[\gamma^{*} \rightarrow\right.$ meson amplitude].
- Strong corrections, new amplitudes for $\mathrm{Q}^{2} \leq 10 \mathrm{GeV}^{2}$.

Exclusive ϕ : CLAS12 experiment

- t-dependence of $6 \mathrm{GeV} \phi$ data consistent with gluonic radius measured at high energies Extrapolation of HERA, FNAL J / ψ results
- CLAS12: Test reaction mechanism and harden GPD-based description

When does t-slope become independent of Q^{2} ?
How does W-dependence change with Q^{2} ?
L / T ratio from vector meson decay and s-channel helicity conservation

- CLAS12: Extract t-dependence of gluon GPD at $x=0.2-0.5$

Obtained from relative t-dependence of $d \sigma_{L} / d t$

First accurate gluonic image of nucleon at large x !

What about the Ji Sum-Rule?

- $\lim _{t \rightarrow 0} \int x d x\left[H_{f}(x, \xi, t)+E_{f}(x, \xi, t)\right]=2 J_{f}$
- Skewing effects, Extracting E ?
- u,d flavor separations from proton, neutron
- $\mathrm{E}^{(\mathrm{n})}$ dominates unpolarized $\mathrm{n}\left(\mathrm{e}, \mathrm{e}^{\prime} \boldsymbol{\gamma}\right) \mathrm{n} \rightarrow$ CLAS12 RG-B
- $E^{(p)}$ requires transversely polarized targets
- $\mathrm{HD}_{\text {ice }}$ for CLAS12
- $\mathrm{NH}_{3},{ }^{3} \mathrm{He}$ with SOLiD or TCS?
- Glue from Deep ϕ at JLab12 and Deep $\phi \& \mathrm{~J} / \boldsymbol{\psi}$ at EIC
- ~50\% of momentum sum rule comes from gluons
- $\sim 50 \%$ of gluon momentum is at $x_{g}>0.1$
- Important role for JLab12!

Constraints on Ji Sum Rule

- $H_{f}(x, O, t)$ valence essentially known from fits to $F_{1 f}(-t) \otimes q_{f}(x) \quad \operatorname{Diehl}(2013), \operatorname{Ahmad}(2007)$
- Measure $\mathrm{H}_{\mathrm{f}}(\mathrm{x}, \mathrm{x}, \mathrm{t}) \rightarrow$ Determines DD Profile function
- Calibrate "skewing effect"
- $E_{f}(x, 0, t)$ constrained from $F_{2 f}(-t)$ and assumption $e_{f}(x)$ does not change sign.
- Test this assumption
- $\mathrm{x} \approx 0.1$ COMPASS $\oplus \mathrm{x} \approx 0.4 \mathrm{JLab} 12 \oplus$ Lattice $\mathrm{QCD} \oplus \ldots$
- Transverse polarization data + Theory + Models \rightarrow Tight constraint on $q-\bar{q}$ contribution to Ji Sum Rule from JLab 12 GeV era.
- Need the EIC to constrain the sea \& gluons

Spatial Imaging with the EIC

- Improved neutron DVES via tagging of spectator proton over full range of Deuteron wave-function
- Precision DVES measurements with transverse polarized targets
- Exclusive DVES on nuclei
- Low- x_{B}, high Q^{2} : Imaging gluons and the quark-sea in the nucleon and in nuclei
- $n-p$ density differences in $N>Z$ nuclei $\xlongequal[=]{u}$-d differences in GPDs of $\mathrm{N}>\mathrm{Z}$ nuclei

DVCS on the Proton at the EIC:

Transverse Imaging vs X_{B}

- Tagging the recoil protons over the full momentum range is essential for precision imaging
- Repeat with L \& T polarized beam

Diffractive DIS and DVES: gaining a factor 5000 .

- EIC Luminosity \otimes Acceptance $=$ HERA $\times(100 \times 50)$
- Full proton detection acceptance to "Beam-Stay-Clear (BSC)" limit of $\sim 10 \times r m s$ emittance:
- JLEIC:
$\theta_{\mathrm{p}}>3 \mathrm{mrad}$ OR
$\left|\Delta p_{1} / p_{0}\right| \approx x_{B j}$ >0.003

Acceptance for p^{\prime} in DDIS/DVES

Tagging essential for exclusivity
Acceptance in diffractive peak ($\mathrm{X}_{\mathrm{L}}>\sim .98$)
ZEUS: ~2\%
JLEIC: ~100\%

DVES on Nuclei

- Precision charge densities measured in 1970s
- "Neutron Skin" of heavy nuclei has implications for nuclear equation of state \& neutron star structure.
- $p-n \cong u$-quark - d-quark
- $\boldsymbol{\rho}, \omega$: DVES amplitude has charge weight $\mathrm{e}_{\mathrm{u}} \mp \mathrm{e}_{\mathrm{d}}$.
- q + q-bar
- Gluon profiles of nuclei from J / Ψ and ϕ

Gluon Imaging of Nuclei: Deep- ϕ

- Luminosity per nucleus ~1/A.
- d $\sigma / \mathrm{dt}(\mathrm{t}=0)$ ~ A^{2}
- $|t| \approx \Delta_{\perp}^{2}$ resolved by ${ }^{A} Z\left(e, e^{\prime} K^{+} K^{-}\right) X$ kinematics
- Recoil nucleus lost in 10б Beam envelope
- Break-up channels vetoed by ZDC \& forward trackers

Nuclear DVES and Exclusivity: ${ }^{208} \mathrm{~Pb}$

- Unresolved boundexcited states smooth out diffraction pattern.
- $3^{-}(2.6 \mathrm{MeV})$, 5-(3.2 MeV), $2^{+}(4.1 \mathrm{MeV})$, $4^{+}(4.3 \mathrm{MeV})$
- In DVES@EIC, γ cascade boosted ($\times 40$ JLEIC, $\times 100$ eRHIC)
- High Resolution $\left(\mathrm{PbWO}_{4}\right)$ forward EMCal can veto ($\sim 50 \%$) $\mathrm{E}_{\gamma}>100 \mathrm{MeV}$

EIC Users Group: 788 members

- 788 Members
- 169 Institutions
- 29 Countries
- Join us!

Backup Slides

Double－Distribution GPDs at $x= \pm \xi$

人，Compton Form Factor：$\quad \xi=x_{B j} /\left(2-x_{B j}\right)$

$\operatorname{Im}\left[\nexists_{f}\left(\xi, \Delta^{2}\right)\right]=\pi\left[H_{f}\left(\xi, \xi, \Delta^{2}\right)-H_{f}\left(-\xi, \xi, \Delta^{2}\right)\right]$
人े．$\xi \operatorname{Im}\left[H_{f}\left(\xi, \Delta^{2}\right)\right]=\pi \int_{0}^{x_{\beta_{j}}} d \beta\left[q_{f}(\beta)+\bar{q}_{f}(\beta)\right]\left[h_{f}(\alpha, \beta)\right]_{\alpha=1-\beta / \xi} e^{\Delta^{2} B_{1 f}(\beta)}$
會 Profile functions $h(\alpha, \beta)$ arbitrary（symmetric in α, β ）：
人 Use：$\quad h(\alpha, \beta)=N_{1} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]}{(1-|\beta|)^{3}}$

$$
\Delta^{2}=-\frac{4 \xi^{2} M^{2}+\Delta_{\perp}^{2}}{1-\xi^{2}}
$$

人，M．Burkardt，arXiv：0711．1881
$\boldsymbol{\Delta}_{\perp}$ ：Fourier Conjugate to \mathbf{r}_{\perp} ，the transverse spatial separation between the active parton and the transverse spatial Center－of－ Momentum of the spectator system．

Deep ω

- L. Morand [CLAS] EPJ A 24, (2005) 445.
- $r_{0,0}{ }^{04} \approx 0.5 \rightarrow \sigma_{T} \sim \sigma_{L}$
- $\mathrm{r}_{1,-1}{ }^{04} \approx-0.2 \rightarrow$ SCHE
- $\boldsymbol{\gamma}^{*}{ }_{\mathrm{T}} \rightarrow \omega_{\mathrm{L}}$
- $\boldsymbol{\gamma}^{*}{ }_{\mathrm{L}} \rightarrow \omega_{\mathrm{T}}$
- $\gamma^{*}(\pm) \rightarrow \omega(\mp)$

Fig. 18. (Color online) $r_{i j}^{\alpha}$ extracted with the method of moments for 8 bins in $\left(Q^{2}, x_{\mathrm{B}}\right)$ and for $t^{\prime}<0.5 \mathrm{GeV}^{2}$. The location and size of each graph correspond to the $\left(Q^{2}, x_{\mathrm{B}}\right)$ range over which the data is integrated, but the scale is the same on all graphs. The abscissa on each graph corresponds to the following list of matrix elements: $r_{00}^{04}, \operatorname{Re} r_{10}^{04}, r_{1-1}^{04}, r_{00}^{1}$, $r_{11}^{1}, \operatorname{Re} r_{10}^{1}, r_{1-1}^{1}, \operatorname{Im} r_{10}^{2}, \operatorname{Im} r_{1-1}^{2}, r_{00}^{5}, r_{11}^{5}, \operatorname{Rer} r_{10}^{5}, r_{1-1}^{5}, \operatorname{Im} r_{10}^{6}$ $\operatorname{Im} r_{1-1}^{6}$. The filled symbols (red online) indicate those matrix elements which are zero if SCHC applies. The 16 th entry (empty circle, blue online, in some cases off scale) is the combination of $r_{i j}^{\alpha}$ given by eq. (11). Error bars include systematic uncertainties added in quadrature.

DVCS/DVMP with CLAS at 12 GeV

- 80 days on H_{2} target at $\sim 10^{35} / \mathrm{cm}^{2} / \mathrm{s}$
- DVCS/Vector Meson production/ TCS with low-Q2 tagger concurrent
- 120 days on Longitudinally Polarized NH_{3} target
- Total Luminosity $10^{35} / \mathrm{cm}^{2} / \mathrm{s}$, dilution factor $\sim 1 / 10$
- 90 days: $\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma \mathrm{n}\right) \mathrm{p}_{\mathrm{s}}$
- ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime} \gamma \alpha\right)$ with upgraded BoNUS detector
- GEM based radial TPC for recoil α-detection
- Ambitions/options for Transversely polarized targets
- NH_{3} target has 5 T transverse field
- need to shield detectors from "sheet of flame"
- Reduce (Luminosity)•(Acceptance) by factor of 10 (my guess)
- HD-ice target: Transversely polarized H
- 110 Days approved
- Luminosity•(polarization) ${ }^{2}$ not yet known

Exclusive $\rho^{0} \rightarrow \pi \pi L / T$ separation from SCHC

Impact of Hall A+C DVCS Kinematics

- Multiple Energy settings at key (x_{B}, Q^{2}) settings.
- Expanded reach in X_{B} and Q^{2}.
- Beam time adjusted for zequal statistics in each bin

DVCS: Energy separation setting ($\left.Q^{2}=3.4 \mathrm{GeV}^{2}, x_{B}=0.5\right)$

Cross section as a function of ϕ for different bins in t

Cross section after BH subtraction: large variation with E_{b}

DVCS: high- Q^{2} and low- x_{B} extension

$$
Q^{2}=10 \mathrm{GeV}^{2}, x_{B}=0.6
$$

$$
Q^{2}=3 \mathrm{GeV}^{2}, x_{B}=0.2
$$

$\phi(0-360) \mathrm{deg}$
12 days

$\phi(0-360)$ deg
1 day

Partonic Structure of the Nucleon

Studying matter as it is illuminated by a light-front

- DIS: H(e, $\left.e^{\prime}\right) X$
- Longitudinal (light-cone) Momentum distributions
- Elastic Electro-Weak Form Factors: $\mathrm{H}\left(e, e^{\prime}\right) p . .$.
- Fourier Transform of spatial impact-parameter distributions
- 2-D formalism fully compatible with Q.M. and Relativity
- Generalized Parton Distributions Deeply Virtual Exclusive Scattering

- eN $\rightarrow e N \gamma$, e $N \rightarrow e N(\pi, \rho, \phi)$, etc
- Correlations of longitudinal momentum fraction with transverse spatial position

DVCS : CLAS12 Run Group A

- 0.3% of statistics on tape.

Deep π^{0} : CLAS12 Run Group A

- 0.3% of the statistics on tape.

- Threshold region poorly measured
- CLAS 12:
- Full t -
 distrbution
- fine bins in s at threshold
- SoLID,
- Electroproduction
- Polarized Target

Example Regge-Inspired Model of GPDs

M.Diehl, ... EPJC 73 (2013)
(also S. Liuti et al.)
$H_{f f}\left(x, 0, \Delta^{2}\right)=q_{f}(x) \exp \left[\Delta^{2} B_{l f}(x)\right]$
$E_{f}\left(x, 0, \Delta^{2}\right)=e_{f}(x) \exp \left[\Delta^{2} B_{2 f}(x)\right]$

- $q_{f}(x): A B M 2011$

$$
e_{f}(x)=\kappa_{f} N_{f} x^{-a_{f}}(1-x)^{-\beta_{f}}\left(1-\gamma_{f} x^{1 / 2}\right)
$$

- $B_{n f}(x)=\alpha_{f}{ }^{\prime}(1-x)^{3} \log (1 / x)+A_{n f} x(1-x)^{2}$ $+B_{n f}(1-x)^{3}$
- Fit:

$$
\begin{aligned}
& \int d x H_{f}\left(x, 0, \Delta^{2}\right)=F_{l f}\left(-\Delta^{2}\right) \\
& \int d x E_{f}\left(x, 0, \Delta^{2}\right)=F_{2 f}\left(-\Delta^{2}\right)
\end{aligned}
$$

(, Compton Form Factors: $\quad \xi=x_{B j} /\left(2-x_{B j}\right)$ $\operatorname{Im}\left[\not \#_{f}\left(\xi, \Delta^{2}\right)\right]=\pi\left[H_{f}\left(\xi, \xi, \Delta^{2}\right)-H_{f}\left(-\xi, \xi, \Delta^{2}\right)\right]$
$\xi \operatorname{Im}\left[H_{f}\left(\xi, \Delta^{2}\right)\right]=\pi \int_{0}^{\varepsilon_{j, j}} d \beta\left[q_{f}(\beta)+\bar{q}_{f}(\beta)\right]\left[h_{f}(\alpha, \beta)\right]_{\alpha=1-\beta / 5} e^{\alpha^{2} B_{1 /}(\beta)}$
人) Profile functions $h(\alpha, \beta)$ arbitrary (symmetric in α, β):

$h(\alpha, \beta)=N_{1} \frac{\left[(1-|\beta|)^{2}-\alpha^{2}\right]}{(1-|\beta|)^{3}}$

