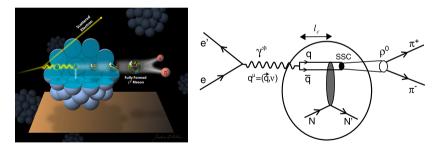
The Color Transparency Experiment

The search for color transparency through the A(e, e'p) reaction at 12 GeV

Latiful Kabir (For the Hall-C Collaboration) Mississippi State University

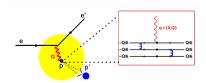
June 18th, 2018



Outline

- Color Transparency (CT)
- Previous Measurements
- LH₂ and ¹²C Data
- Summary and Current Status

Color Transparency (CT)


- The final/initial state interaction of hadrons with the nuclear medium must vanish for exclusive processes at high momentum transfer ⇒ QCD
- Color transparency is the reduction in interaction due to "squeezing and freezing" at high momentum transfer.
- CT first proposed by Brodsky and Mueller in 1982.



CT is a robust prediction of QCD. The onset of CT has been observed in mesons, but is unconfirmed for barvons.

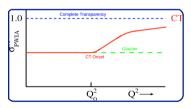
Motivation: CT in Intermediate Energies

- CT is required to explain DIS data.
- Onset of CT would be a signature of the onset of QCD degrees of freedom in nuclei.
- The onset of CT is related to the onset of factorization, which is an important requirement for accessing GPDs in deep exclusive meson production.
- Understanding hadron propagation through nuclear matter.

Signature for CT

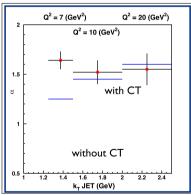
- Nuclear transparency is the ration of cross-sections for exclusive processes from nuclei to nucleons.
- The signature of CT is an increase in the nuclear transparency.

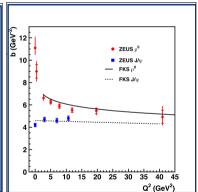
$$T = \frac{\sigma_N}{A\sigma_0}$$


 σ_0 = free (nucleon) cross-section $\sigma_N = \sigma_0 A^{\alpha}$

- CT onset searches:
 - 1) Baryon (proton) transparency
 - A(p, 2p): BNL
 - A(e, e'p): SLAC, JLab
 - 2) Meson (pions and ρ^0 -meson)
 - A(π, di-jet): Fermi Lab
 - A(γ , π^- p): JLab
 - A(e, $e'\pi^+$): JLab
 - A(e, $e'\rho^0$): DESY and JLab

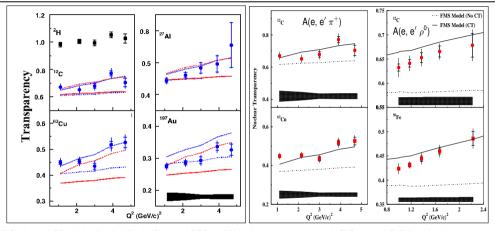
$$egin{aligned} T &= A^{lpha-1} \ rac{d\sigma}{dt} &\propto e^{-bt} \ b &= rac{1}{2}(R_h^2 + R_p^2) \end{aligned}$$


$$\sigma_{
m PLC}pprox\sigma_{
m hN}rac{b^2}{R^{h^2}}$$



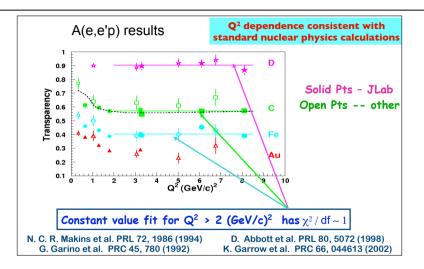
Color Transparency at High Energies

Color transparency is well established at high energies. The onset of CT is of primary interest.


Aitala et al. PRL 86, 4773 (2001)

(a) Coherent diffractive dissociation (b) Vector meson production at of pions at Fermi lab large Q^2 at HERA

Previous Measurements: CT onset search at JLab

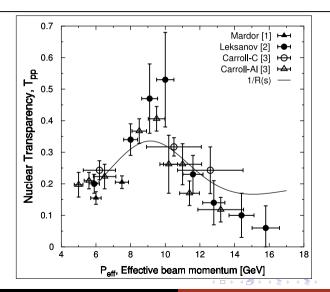


B.Clasie et al. PRL 99:242502 (2007) X. Qian et al. PRC81:055209 (2010)

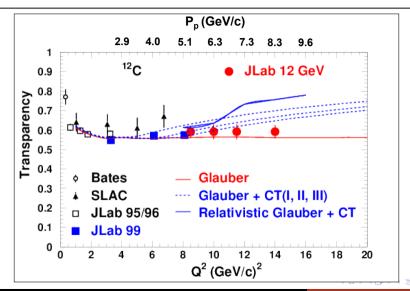
L. El Fassi et al. PLB 712,326 (2012)

Hall-C experiment E01-107 (Pion electroproduction) and CLAS experiment E02-110
 (ρ electroproduction) consistent with prediction of CT

Previous Measurements: CT experiment at JLab



No evidence for CT at 6 GeV


Previous Measurements: BNL Result

- (p, 2p) experiment at BNL found an enhancement in the transparency.
- Decreases at higher momentum.
- Result inconsistent with CT only
- Can be explained by including additional mechanisms such as nuclear filtering or charm resonance.

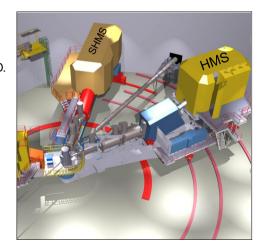
A. Leksanov *et al.* PRL 87 (2001) J. L. S. Aclander *et al.* PRC 70 (2004)

Color Transparency Experiment at JLab in 12 GeV Era

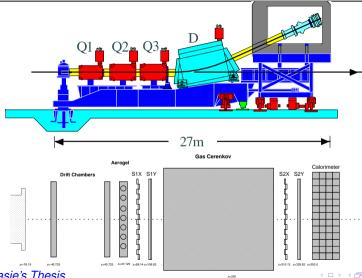
CT Experimental Setup and Requirements

• Trigger: Coincidence mode.

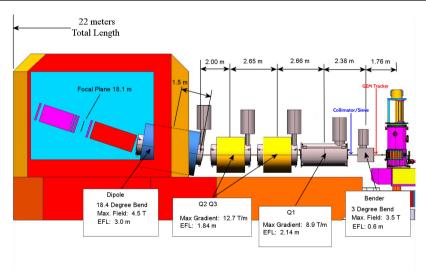
• Spectrometers: SHMS for proton and HMS for electron.


Detectors:
 Standard detector packages from SHMS and HMS for PID.

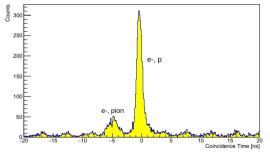
Target:


10 cm LH₂ (Heep check) Al dummy (Background) 6% ¹²C (Production)

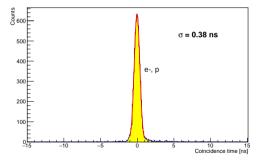
• Kinematic settings:


Q ² [GeV ²]	$\theta_{ m SHMS}$ [deg]	P ^{central} [GeV/c]	$\theta_{ m HMS}$ [deg]	Prentral [GeV/c]
8.0	17.1	5.122	45.1	2.131
9.5	21.6	5.925	23.2	5.539
11.5	17.8	7.001	28.5	4.478
14.3	12.8	8.505	39.3	2.982

Experimental Setup: HMS

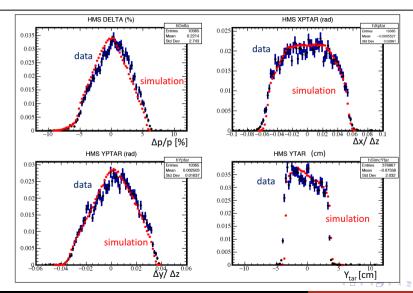


Experimental Setup: SHMS

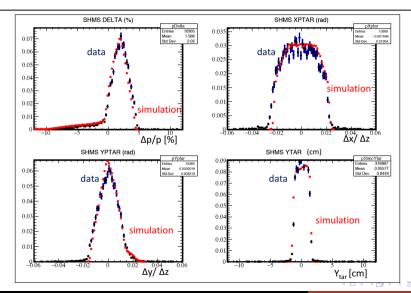


Coincidence Time

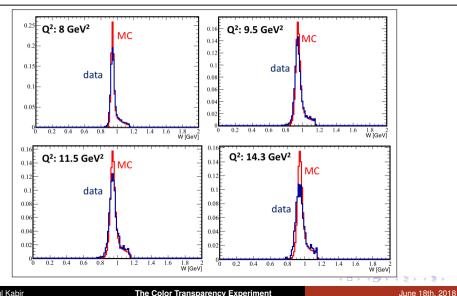
$$t_{ ext{coin}} = t_{ ext{electron}}^{ ext{tar}} - t_{ ext{proton}}^{ ext{tar}} \ t_{ ext{coin}}^{ ext{coin}} = (t_{ ext{trigger}-1} - \Delta t^P) - (t_{ ext{trigger}-4} - \Delta t^H) \ \Delta t^{H(P)} = \Delta t_{(1)}^{H(P)} + \Delta t_{(2)}^{H(P)} + \Delta t_{(3)}^{H(P)}$$

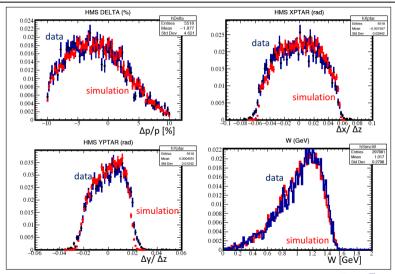


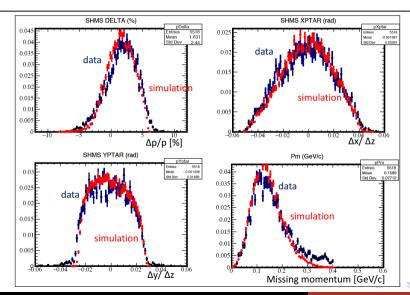
(a) Coincidence time with accidental

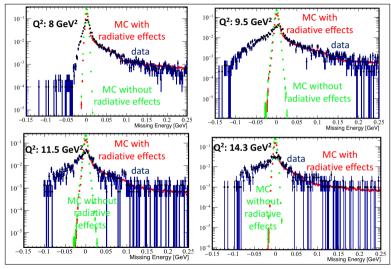


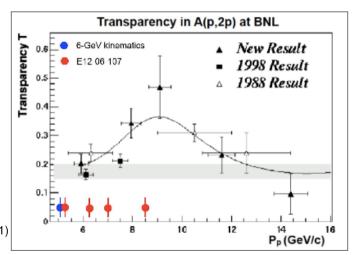
(b) Coincidence time for CT


LH_2 Data at $Q^2 = 8 \text{ GeV}^2$: Data vs Simulation


LH₂ Data at $Q^2 = 8 \text{ GeV}^2$: Data vs Simulation


LH₂ W [GeV] Distribution: Data vs Simulation


¹²C Data at $Q^2 = 8 \text{ GeV}^2$: Data vs Simulation


¹²C Data at $Q^2 = 8 \text{ GeV}^2$: Data vs Simulation

Hydrogen Radiative Tail: Data vs Simulation

Projection of the data points

BNL results: PRL **87**, 212301 (2001) PRL **81**, 5085 (1998) PRL **61**, 1698 (1988)

Summary and Current Status

- The experiment aims to search for the onset of CT for protons and help understand hadron propagation through the nuclear matter.
- The proton momentum range covered in this experiment overlaps with the region where the enhancement was observed at BNL ⇒ Will help verify the origins of the enhancement.
- We have collected four data points in the Q^2 range 8 14.3 GeV².
- The preliminary analysis shows that data to be of good quality.
- The analysis to extract transparency is in progress.
- Preliminary result by the end of this year!

Thank You!

