pEMC and Color Propagation: Novel Aspects and Opportunities for the Future

Will Brooks USM, Valparaíso, Chile "Polarized EMC effect"

- Approved experiment E-12-14001 (S. Kuhn, WB)
 - 55 days, B⁺ rating
- "Scheduled" for ~2022++
- Requires some polarized target development studies ongoing collaboration: USM Valparaíso, UNH, UVA, ODU, JLAB
 - ⁷Li is target, = polarized proton + medium
 - ⁷LiD and ⁶LiH two-cell target: control systematics

The goal: to measure $R_{pol} = g_{1A}^z/g_{1N}$

https://www.jlab.org/exp_prog/proposals/14/PR12-14-001.pdf

https://arxiv.org/pdf/1510.00737.pdf

Some History

- \$ 4/2005 pEMC featured in DOE 12 GeV Science Review
- \$ 1/2006 PAC 29 considered two 6 GeV LOIs, responded negatively
- Submitted 12 GeV LOI 10-005 to PAC 35, positive response
- 2014 Submitted full proposal to PAC 42, approved

Theoretical Descriptions

- Constraints from Bjorken Sum rule in an extension of Gribov theory were used to describe 0.03<x<0.2, Vadim Guzey and Mark Strikman
- Quark-Meson Coupling Model (QMC), Ian Cloet, Wolfgang Bentz, Tony Thomas
 - quarks inside nucleons in nucleus interact through exchange of mesons (MIT bag, NJL)
 - related to earlier work by Tsushima, Saito, Ueda, Thomas (2002) on Li nuclides
- Chiral Quark Soliton Model, Jason Smith, Jerry Miller
 - quarks in nucleons (soliton) exchange pairs of pions, vector mesons with nuclear medium

FIG. 6: The EMC and polarized EMC effect in ⁷Li. The empirical data is from Ref. [31].

FIG. 8: The EMC and polarized EMC effect in ¹⁵N. The empirical data is from Ref. [31].

<u>C. Cloet, W. Bentz, A. W. Thomas</u>, Phys.Lett. B642 (2006) 210-217

Valence only calculations consistent with Cloet, Bentz, Thomas calculations

Same model shows small effects due to sea quarks for the unpolarized case (consistent with data)

Miller, Smith

FIG. 1: The ratio Eq. (13) at scale $Q^2 = 10 \text{ GeV}^2$ for nuclear matter. The heavy line is the full calculation for nuclear matter. The light line is the effect calulated using only medium modifications to the 'valence' energy level as decribed in the text.

Constraints from Bjorken sum rule within an extension of Gribov theory

Ratio A=7/A=1 of nonsinglet structure functions

Predict effects ranging
 from -15% to +50%

$$\begin{split} g_1^{3/2\,3/2}(x) &\equiv \frac{1}{2} (q_{\uparrow}^{3/2\,3/2}(x) - q_{\downarrow}^{3/2\,3/2}(x)) \\ g_1^{1/2\,1/2}(x) &\equiv \frac{1}{2} (q_{\uparrow}^{3/2\,1/2}(x) - q_{\downarrow}^{3/2\,1/2}(x)) \end{split}$$

V. Guzey and M. Strikman, Phys.Rev. C61 (2000) 014002

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

In a polarized target, the nucleus is polarized overall

Within the nucleus, the spins of specific nucleon states are aligned to varying degrees with the spin of the overall nucleus

thus, have polarized nucleons within the medium

In a polarized target, the nucleus is polarized overall

Within the nucleus, the spins of specific nucleon states are aligned to varying degrees with the spin of the overall nucleus

thus, have polarized nucleons within the medium

Probabilities for parallel spin of nucleon and nucleus

Nucleus	X	
D	0.927 ± 0.015	[7,9]
⁶ Li	0.866 ± 0.012	[8]
$^{7}Li_{p}$	-0.596 <u>+</u>0.03	[9–11]
$^{7}Li_{n}$	-0.02 ± 0.02	[9]

"Effective densities and polarizations of the targets for the GDH-experiments at MAMI and ELSA," Ch. Rohlof and H. Dutz, NIM A 526 (2004) 126

* Incorrect value often quoted in literature, per I. Cloet and V. Guzey. Correct number is ~0.89, even better for the experiment.

$g_1(A)$ – "Polarized EMC Effect" – Some Solid Target Possibilities

Nuclide	Compound	Polarization (%)
6Li	6LiD	45
7Li	7LiD	90
$^{11}\mathbf{B}$	$C_2N_2BH_{13}$	75
13 C	¹³ C ₄ H ₉ OH	65
¹⁹ F	LiF	90

Fig. 6. The polarizations of the ⁶Li and the ⁷Li nuclei versus that of the deuteron. The closed (open) squares are the measured polarization of ⁶Li (⁷Li). The lines are the prediction by EST concept. The measurements are consistent with the EST concept.

First results
 of the large
 COMPASS 6LiD
 polarized
 target
J. Ball et al.,
 NIM
 A498(2003)101

$g_1(A)$ – "Polarized EMC Effect" – ⁷Li as Target

Shell model: 1 unpaired proton, 2 paired neutrons in $P_{3/2}$, closed $S_{1/2}$ shell. Cluster model: triton + alpha

⁷Li polarization: >90%

Nucleon polarization calculations:

Cluster model: 86% GFMC: 89%

89% x 90% = 80%

$$R_{1} = \frac{[d\sigma^{+} - d\sigma^{-}]_{^{7}\mathrm{L}i}}{[d\sigma^{+} - d\sigma^{-}]_{p}} = \frac{g_{1^{^{7}\mathrm{L}i}}^{z} + \frac{P_{zzz}}{P_{z}}g_{1^{^{7}\mathrm{L}i}}^{zzz} + C_{^{7}\mathrm{L}i}(A_{2})}{g_{1}^{p} + C_{p}(A_{2})}$$

$$g_{1A}^{z} = \frac{9}{10}g_{1A}^{3/2} + \frac{3/2}{10}g_{1A}^{3/2} + \frac{3}{10}g_{1A}^{3/2} + \frac{1}{10}g_{1A}^{3/2}$$

$$R_{pol} = g_{1A}^z / g_{1N}$$

Precision of expected results

NNM = Naive nuclear model (just counting percentage of polarization, and dilution factor, no Fermi motion); SNM = Standard Nuclear Model (nucleons-only); QMC = CBT (Cloet Bentz Thomas); MSS = H. Fanchiotti, C. Garca-Canal, T. Tarutina, and V. Vento, (2014), arXiv:1404.3047 [hep-ph]; S/AS=shadowing/antishadowing (Guzey-Strikman).

Systematic uncertainties

Source	Rel. unc. on R_1	Rel. unc. on R_2			
Dilution	2%				
Acceptance		2%			
Polarized background	1% - 3%	1% - 3%			
Model uncertainties	1%	1%			
Radiative corrections	2%	2%			
Total	3.2% - 4%	3.2% - 4%			

4% scale uncertainty not listed Ranges indicate low x to high x

CLAS12 Polarized Target: two target cells

We can adjust the CLAS12 field with ± 80 gauss shim coils and simultaneously polarize two samples in opposite directions.

CLAS12 Polarized Target: 1 kelvin refrigerator

8 March 2018

CLAS Collaboration Meeting

From Chris Keith ²⁹

Target in GEANT Simulation

GEMC PolTarg

Revisión Avances

Actividad 3 :

Se construyó un condensador de gases, actualmente en pruebas con CO2, Instalaciones para pruebas con NH3 están casi finalizadas.

Pruebas con NH3 : 5 Junio en adelante.

Polarized target development at USM Valparaíso

Casting solid ammonia samples for highest density and optimal cooling

Hall B – Run Groups

HALL B

E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	А	80		Polarized			NH ₃
E12-06-109A	DVCS on the neutron with polarized deuterium target	Niccolai		(60)		target RICH (1	target RICH (1		ND ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	А	120	185	sector) 11 Forward tagger		С	
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian	A-	103				S. Kuhn	
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	80					
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103					
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	E	Nuclear
E12-06-113	Free Neutron structure at large x	Bueltman	А	42	42	Radial TPC	11	F	Gas D ₂
E12-14-001	EMC effect in spin structure functions	Brooks	B+	55	55	Pol. LiH target	11	G	LiH
TOTAL CLAS12 run time (approved experiments)				1466 (2118)	631				

Proposal	Physics	Contact	Rating	Days	Group	Equipment	Energy	Group	Target
C12-11-111	SIDIS on transverse polarized target	Contalbrigo	А	110		Transverse 11		н	HD
C12-12-009	Transversity w/ di-hadron on transvere target	Avakian	A	110	110				
C12-12-010	DVCS with transverse polarized target in CLAS12	Elouadrhriri	А	110		target			
All CLAS12 transverse target proposals				330	110				
E12-11-006	Heavy Photon Search at Jefferson Lab (HPS)	Jaros	А	180	180	Setup in alcove	2.2, 6.6	I	Nuclear
E12-11-106	High Precision Measurement of the Proton Charge Radius	Gasparian	А	15	15	Primex 1.1, 2.2		J	H2 gas
Beam time request from CLAS12 C1 experiments + non-CLAS12 experiments				525	305				
Beam time from approved CLAS12 experiments (from previous table)			1466 (2118)	631					
Beam time for Hall B experiments table 1 + table 2 (incl. 110 days of C1 approved exp.)			1991 (2643)	936					

Scheduling considerations HALL B

Assuming all ERR reviews have been passed and beam time requested

- Experiment with hydrogen target to run first to understand detector responses, calibrations
- Provide all Run Groups with significant amount of data during first 5 years

=> schedule ~50% of total approved Run Group days

- Scientific ratings by the PAC
- Schedule High Impact experiments early (PAC41)
- Compatibility with energies used in other Halls
- Benefit to collaboration
- Operating luminosity
- Jeopardy process
- Final scheduling done in NPES committee

Possible RG Schedule (straw man)

Run Group	Days	2016	2017	2018	2019	2020	2021	2022	Remain
All Run Groups	1036 ^{#)}	30	15	95	106	105	105	105	456
HPS	180 *	15		35	10	10	10	10	90
PRad PRadius	15*	15							0
CLAS12 Comn			3 30						0
RG-A + RG-K (proton)	239*		10	20/15 25		30	25		114*
RG-B (deuteron)	90 *				45				45*
RG-F (BoNuS)	42*				21				21
RG-C (NH ₃)	120				30	30			60
RG-C-b (ND ₃)	65					35			30
RG-E (Hadr.)	60	ſ					35		25
RG-H (Transv. Target)	110*		CIQS				35	25	50
RG-D (CT)	60	L	CEBAF Large Acceptance Spectr	rometer				35	25
RG-G (LiD)	55	^{#)} incl. RG-H]					35	20

JLab PAC 29 Report

Issues: The "spin dependent EMC effect " is experimentally difficult to define. Since we cannot polarize all the nucleons in a given nucleus, the concept of mean field spin effect is ill defined compared to the unpolarized case. The spin structure function of a nucleus g1 is the product of the asymmetry A1 with the unpolarized structure function F1. The unpolarized structure function F1 has obviously a well defined "EMC" effect and A1 is an already small quantity which decreases with the atomic number A of the nucleus. Given the uncertainty in the nuclear spin structure effects and the small size of the asymmetry A1, it will be difficult to extract what the proponents call the "spin EMC effect".

Recommendation: The PAC is skeptical that the interpretation of such a measurement would be meaningful.

PAC 42 report evaluation of the proposal

"If it can be measured with sufficient precision, this measurement provides a unique and valuable independent test of models of the EMC effect. However, while the proposed measurement is sensitive enough to see an effect for many of the models shown, the precision of the measurement is not sufficient to precisely map out a nuclear modification. In addition, it is not clear to what extent the results can be interpreted and used to help understand the EMC effect at this time."

https://www.jlab.org/exp_prog/PACpage/PAC42/PAC42_FINAL_Report.pdf

pEMC - Conclusions

- A very interesting, groundbreaking measurement
- Technically challenging to achieve small uncertainties
- Theory predictions vary greatly experimental results could be surprising
- Target instrumentation will clearly be ready on schedule
- Priority assigned by PAC is relatively low. Currently assigned to the very last CLAS12 running period, 2022++

Communicating and sharpening the physics case is crucial

Color Propagation Studies

- Nuclear targets/collisions producing identified particles
- Semi-inclusive DIS: HERMES, JLab (Hall B&C), EIC
- Heavy-ion collisions: RHIC and LHC
- Physics:
 - Parton energy loss in cold/hot medium, color lifetime
 - Hadron formation mechanisms, time scales, color recombination, color screening, etc.
Old issues

 Pion/hadron attenuation primarily caused by hadronic interaction of forming hadron, or by energy loss? (Will be) resolved by CLAS12 data. (Hint: it's not energy loss.)

What we are learning from the HERMES data and new CLAS data:

- Measurement of color lifetime
- Direct measurement of quark energy loss
- Color lifetime distribution important impacts at high energies

Result for model variant BL30, baseline model at fixed pre-hadron cross-section 30 mb.

New and novel issues

- What causes the z-dependent (anti-) attenuation of protons?
- Seen by HERMES, (will be) confirmed by CLAS (CLAS12, EIC)

COMPARING DIFFERENT HADRONS

HERMES demonstrated that simple expectations about hadron flavor independence are naïve - Eur. Phys. J. A (2011) 47: 113.

No model can describe all of these data

How to decipher the proton attenuation mechanism?

More multi-dimensional observables (e.g. pT broadening, twoparticle correlations; others?)

More theory work.

Two-dimensional analysis demonstrates that this is at least a 3dimensional problem.

New and novel issues

- Attenuation of anti-protons mechanism?
 - Seen by HERMES, (will be) studied at CLAS12 & EIC

Same origins as K- attenuation? (String rank? Cross section?)

New and novel issues

• Attenuation of J/ Ψ = attenuation of b quarks = 80% ?? Accidental?

- Increasing suppression w.r.t pp reference with increasing centrality
- Similar trend and magnitude for both component.

DIS channels: *stable* hadrons, accessible with 11 GeV JLab future experiment PR12-06-117

meson	с т	mass	flavor content	baryon	сТ	mass	flavor content
π ⁰	25 nm	0.13	ud	р	stable	0.94	ud
π+, π-	7.8 m	0.14	ud	P	stable	0.94	ud
η	170 pm	0.55	uds	Λ	79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I 3 fm	Ι.5	uds
η΄	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm	ĺ	uds	Σ-	44 mm	1.2	ds
fl	8 fm	I.3	uds	Σ 0	22 pm	1.2	uds
Ko	27 mm	0.5	ds	= 0	87 mm	1.3	US
K+, K-	3.7 m	0.49	US		19 000	1.2	de

DIS channels: *stable* hadrons, accessible with 11 GeV JLab future experiment PR12-06-117

EDMEC

meson	ст	mass	flavor content	baryon	сТ	mass	flavor content
π^0	25 nm	0.13	ud	P	stable	0.94	ud
77⁺, 71 -	7.8 m	0.14	ud	p	stable	0.94	ud
η	170 pm	0.55	uds		79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I3 fm	Ι.5	uds
η΄	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	I.2	ds
fl	8 fm	Ι.3	uds	Σ0	22 pm	1.2	uds
Ko	27 mm	0.5	ds				
		0.10			87 mm	1.3	US
K+, K-	3./ m	0.49	US		49 mm	13	de

DIS channels: stable hadrons, accessible with 11 GeV JLab future experiment PR12-06-117 Actively underway with existing 5 GeV data HERMES

meson	сТ	mass	flavor content	baryon	сТ	mass	flavor content
π^0	25 nm	0.13	ud	P	stable	0.94	ud
AT, H	7.8 m	0.14	ud	P	stable	0.94	ud
n	170 pm	0.55	uds		79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I3 fm	Ι.5	uds
η'	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	1.2	ds
fl	8 fm	1.3	uds	Σ0	22 pm	1.2	uds
K0	27 mm	0.5	ds	ΞΟ	87 mm	1.3	US
K+.K-	3.7 m	0.49	US		10		
					49 mm		

DIS channels: stable hadrons, accessible with 11 GeV JLab future experiment PR12-06-117 Actively underway with existing 5 GeV data HERMES

meson	с т	mass	flavor content	baryon	СТ	mass	flavor content
π	25 nm	0. 3		Neavy	stable	0.94	ud
T T , T T	7.8 m	0.14	ud	P	stable	0.94	ud
η	170 pm	0.55	nesor	ns anc	79 mm	1.1	uds
ω	23 fm	0.78	aryon	S	el 3 fm	Ι.5	uds
η'	0.98 pm	0.96	kiner	natic	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	1.2	ds
fl	8 fm	1.3	udsd		22 pm	1.2	uds
K0	27 mm	0.5	ds		87 mm	1.3	US
K+. K-	3.7 m	0.49	US		10 0000		

Aims

Quark-Hadron Transition

Discover new fundamental features of hadronization

- Characteristic time distributions
- Mechanisms of color neutralization

Quark-Nucleus Interaction

Understand how color interacts within nuclei

- Partonic interactions with medium ("tomography")
 - energy loss in-medium: ê
 - transverse momentum broadening: \hat{q}

Method: struck quark from DIS probes nuclei of different sizes

Partonic elastic scattering in medium

Partonic elastic scattering in medium

000

000

Gluon bremsstrahlung in vacuum and in medium

000

The production length is shown in yellow

Partonic elastic scattering in medium

200

Gluon bremsstrahlung in vacuum and in medium

000

Color neutralization

The production length is shown in yellow

39

Partonic elastic scattering in medium

000

Gluon bremsstrahlung in vacuum and in medium

000

Color neutralization

Hadron formation

The production length is shown in yellow

Comparison of Color Propagation in Three Processes

DIS

D-Y

RHI Collisions

Comparison of Color Propagation in **Three Processes**

D-Y

By comparing p_T broadening and hadron attenuation in nuclei of different sizes, one can measure the *length* of the color propagation process (fm scale) Observable: p_T broadening

$$\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

p⊤ broadening is a tool: sample the gluon field using a colored probe:

$$\Delta p_T^2 \propto G(x, Q^2) \rho L$$

and radiative energy loss: $-\frac{dE}{dx} = \frac{\alpha_{\rm s}N_{\rm c}}{4}\Delta p_{\rm T}^2$

p_T broadening data - Drell-Yan and SIDIS

- New, precision data with identified hadrons!
- CLAS π^+ : 81 four-dimensional bins in Q², v, z_h, and A
- Intriguing *saturation*: production length or something else?

p_T broadening data - Drell-Yan and SIDIS

- New, precision data with identified hadrons!
- CLAS π^+ : 81 four-dimensional bins in Q², v, z_h, and A
- Intriguing *saturation*: production length or something else?

2.0<0²<3.0 3.4<v<4.0 Multiplicity ratios (nucleus/deuterium)

Data from CLAS6 and CLAS12 will provide the ultimate low-vstudies in up to 4-fold differential multiplicity ratios. EIC will have overlap and will provide the crucial high-vstudies. CLAS6: π^+ (K⁰, π^0 , π^-)
Lund String Model (~1983)

Remarkably successful model, foundational tool in HEP

- Alternative physical picture to pQCD: emission of many gluons in vacuum, string as an average; quantitative
- Successful, but few connections to fundamental QCD
- We can *compare* some of our results to the Lund String Model, and other results to pQCD

Richard P. Feynman - Nobel Lecture

Nobel Lecture, December 11, 1965

The Development of the Space-Time View of Quantum Electrodynamics

https://www.nobelprize.org/ nobel_prizes/physics/laureates/ 1965/feynman-lecture.html

A Future Nobel Prize to a theorist for Space-Time View of QCD?

Space-time characteristics of the struck quark

Assume: Single-photon exchange, no quark-pair production "JLab" example: $Q^2 = 3 \text{ GeV}^2$, v = 3 GeV. ($x_{Bj} \sim 0.5$)

Struck quark absorbs virtual photon energy v and momentum $p_{\gamma^*} = |\vec{p}|_{\gamma^*} | = \sqrt{(v^2 - Q^2)}$.

- Neglect any initial momentum/mass of quark
- Immediately after the interaction, quark mass $m_q=Q = \sqrt{(Q^2)}$.
- Gamma factor is therefore $\gamma = \nu/Q$, beta is $\beta = p_{\gamma^*}/\nu$.

JLab example: $\gamma = 1.73$, $\beta = 0.82$

Rigorous? γ, β allow: 1.extrapolations to EIC kinematics, 2.test of time dilation in CLAS fits, and 3.direct comparison between JLab and HERMES fits

Extracting characteristic times from HERMES and CLAS π⁺ data using the Brooks-Lopez Geometric Model

HERMES Study - Observables

p_T broadening

 $\Delta p_T^2(Q^2,\nu,z) \equiv \left\langle p_T^2(Q^2,\nu,z) \right\rangle |_A - \left\langle p_T^2(Q^2,\nu,z) \right\rangle |_p$

We fit both observables simultaneously

B-L Geometric model description I

- Propagating quark causes p_{T} broadening of final hadron
- Propagating (pre-)hadron "disappears" when it undergoes an inelastic interaction with cross section σ
- Implemented as Monte Carlo calculation in x, y, z, L_p
- <u>Simultaneous fit of p_T broadening and multiplicity ratio</u>
- Realistic nuclear density, integrated along path

Path of quark is	partonic	hadronic		
phase" and "hadronic	L _p , q̂	σ _{inel}		
phase"	p _T broadening	Multiplicity ratio		

B-L Geometric model description II

Baseline Model ("BL") implemented with 3 parameters:

- q-hat parameter (transport coefficient) that sets the scale of p_T broadening
- Production length <L_p>: distance over which p_T broadening and energy loss occur. Assumed exponential form.
- 3. Cross section for prehadron to interact with nucleus.

B-L Geometric model description

$$\langle \Delta p_T^2 \rangle = \langle \hat{q}_0 \int_{z=z_0}^{z=z_0+L_p^*} \rho(x_0, y_0, z) \, dz \, \rangle_{x_0, y_0, z_0, L_p}$$

Zmax

 L_p is distributed as exponential x_0, y_0, z_0 thrown uniformly in sphere, weighted by p(x,y,z) $L_p^* = L_p$ except where truncated by integration sphere

$$\langle R_M \rangle = \langle exp(-\sigma \int_{z=z_0+L_p}^{z=z_{max}} \rho(x, y, z) dx dy dz \rangle \rangle_{x_0, y_0, z_0, L_p}$$

The above are computed sequentially (same x₀, y₀, z₀, L_p) Data in (x,Q²,z) bin: fitted to model, 3 parameters: q̂₀,<L_p>,σ <u>No dynamical information is assumed; it emerges from fit</u> Systematic errors: 3% for multiplicity ratio, 4% for p_T broadening Comment on the B-L model

I believe that studies of this kind can be carried out at the same level of validity as the estimation of centrality in heavy ion collisions.

This model has the same foundation as the wellknown "Glauber Model" used to estimate centrality in heavy ion collisions: the spatial mass distribution of protons and neutrons in the nucleus.

Fit of HERMES L_p results to Lund Model form

We recover the known value of the string constant completely independently!

Light cone Lund String Model form for lab frame:

$$l_p = \frac{1}{2\mathcal{K}} \cdot \left(M_p + \nu + \sqrt{\nu^2 + Q^2} - 2 \cdot \nu \cdot z' \right)$$

HERMES data analysis: exploring potential nuclear dependence of production time, and extrapolation to the vacuum

 $L_p(A) = L_{p0} + c_1 A^{1/3} + c_2 A^{2/3}$

The case with **free** L_{po} , c_1 and c_2

The case with free L_{po} and c_{2} , and fixed $c_1=0$

Conclusion: good evidence for the following functional form. The vacuum term L_{po} is determined, but with large uncertainties. There are hints that may help us to understand color propagation mechanisms at lower and higher z_h. The JLab data should allow a more precise study.

 $L_p(A) = L_{p0} + c_2 A^{2/3}$

HERMES data analysis: comparison of two possible functional forms of the production length distributions: *exponential* and *fixed(delta function)*

The fit has some sensitivity to the functional form of the production length. More comments in upcoming slides.

Color lifetime extraction: B-L model applied to CLAS 5 GeV data

Color lifetime extraction: B-L model applied to CLAS 5 GeV data

Example of fit (one of 150 bins in x, Q², and z)

<x>=0.166, <Q²>=1.17 GeV², (<v>=3.76 GeV), <z>=0.445

 $L_p=1.8\pm0.4 \text{ fm}$ $\chi^2/dof = 0.5$

Simultaneous fit *couples* p_T broadening to multiplicity ratio

Effect of production length distribution on p_T broadening

Relevance at high energy **Relevance to EIC!**

Tests of **exponential distribution** hypothesis for quark lifetime **CLAS Exploratory Study with 5 GeV Data**

Exponential distribution of quark lifetime

103 pc	oints, chisqu	uared=69.2,	chisq/dof	= 0.685	MEDIUM even	t selection.
FCN=6	59.2253 FROM	MINOS S	STATUS=SUCC	ESSFUL	10 CALLS	63 TOTAL
		EDM=2.30	163e-20	STRATE	GY= 1 ER	ROR MATRIX ACCURATE
EXT	PARAMETER				STEP	FIRST
NO.	NAME	VALUE	ERRO)R	SIZE	DERIVATIVE
1	p0	1.07864e+0	0 4.8347	′6e-01	-0.00000e+00	6.52690e-07
2	p1	9.33423e-0	2.4571	4e-01	2.45714e-01	7.34350e-11

Single value of quark lifetime

88 points, ch	nisquared=289.5,	hisq/dof = 3.36	MEDIUM even	t selection.
FCN=289.533	FROM MINOS ST	ATUS=SUCCESSFUL	8 CALLS	63 TOTAL
	EDM=3.954	99e–19 STRAT	EGY= 1 E	RROR MATRIX ACCURATE
EXT PARAMET	ER		STEP	FIRST
NO. NAME	VALUE	ERROR	SIZE	DERIVATIVE
1 p0	1.95920e+00	2.75776e-01	-0.00000e+00	8.75252e-07
2 p1	3.95062e-01	1.37012e-01	1.37012e-01	-3.09899e-10

The data clearly prefer an exponential distribution

CLAS Exploratory Analysis ≈ Lund String Model

CLAS Exploratory Analysis ≈ Lund String Model

 L_p (Q², v, z_h) from CLAS analysis similar to values from the Lund String Model for z_h>0.4

CLAS Exploratory Analysis ≈ Lund String Model

 L_p (Q², v, z_h) from CLAS analysis similar to values from the Lund String Model for z_h>0.4

Time dilation test of the results

Extrapolation from HERMES to EIC and CLAS

Using the prescription $\gamma = \nu/Q$, $\beta = p_{\gamma^*}/\nu$, we can extrapolate:

Q2	nu	beta*gamma	lp, z=0.32	lp, z=0.53	lp <i>,</i> z=0.75	lp, z=0.94	L Experiment	X
2.40	14.50	9.31	8.57				HERMES	0.09
2.40	13.10	8.40		6.39			HERMES	0.10
2.40	12.40	7.94			4.63		HERMES	0.10
2.30	10.80	7.05				2.40	HERMES	0.11
3.00	4.00	2.08	1.92	1.58	1.21	0.71	CLAS	0.40
7.00	7.00	2.45	2.26	1.86	1.43	0.83	CLAS12	0.53
1.00	4.00	3.87	3.57	2.95	2.26	1.32	CLAS	0.13
2.00	9.00	6.28	5.79	4.78	3.66	2.14	CLAS12	0.12
12.00	32.50	9.33	8.59	7.10	5.44	3.18	EIC	0.20
8.00	37.50	13.22	12.17	10.06	7.71	4.50	EIC	0.11
45.00	140.00	20.85	19.20	15.86	12.15	7.10	EIC	0.17
27.00	150.00	28.85	26.57	21.96	16.82	9.82	EIC	0.10

At EIC we can study a wide range of production lengths!

Extrapolation of HERMES fits to EIC kinematics - two different methods

βγ method

• Lund string model estimation

Fair agreement for several kinematic bins

Largest divergence at low z and high nu target fragmentation region

Wide range of production lengths shows that an interesting program of measurements will be feasible at EIC

The Breakthrough Potential of EIC

The Breakthrough Potential of EIC

• Solving the heavy quark puzzle via heavy meson production (see following slides)
- Solving the heavy quark puzzle via heavy meson production (see following slides)
- Precision time dilation tests over a wide range in v

- Solving the heavy quark puzzle via heavy meson production (see following slides)
- Precision time dilation tests over a wide range in v
- pQCD enhanced non-linear broadening (see following)

- Solving the heavy quark puzzle via heavy meson production (see following slides)
- Precision time dilation tests over a wide range in v
- pQCD enhanced non-linear broadening (see following)
- Flavor dependencies of formed hadrons

- Solving the heavy quark puzzle via heavy meson production (see following slides)
- Precision time dilation tests over a wide range in v
- pQCD enhanced non-linear broadening (see following)
- Flavor dependencies of formed hadrons
- L_p distribution determination

Definitive comparisons of light quark and heavy quark energy loss

Access to very strong, unique light quark energy loss signature via D⁰ heavy meson. Compare to s and c quark energy loss in D_s⁺

NEW THEORY DEVELOPMENT

- T. Liou, A.H. Mueller, B. Wu: Nuclear Physics A 916 (2013) 102–125, arXiv:1304.7677
 - <u>Old</u>: multiple scattering \rightarrow gluon emission, = energy loss

$$-\frac{dE}{dx} = \frac{\alpha_s N_c}{4} \Delta p_T^2 \propto \hat{q} L$$

• <u>New</u>: this energy loss creates more p_T broadening

$$\Delta p_T^2 = \frac{\alpha_s N_c}{8\pi} \hat{q} L \left[ln^2 \frac{L^2}{l_0^2} + \dots \right]$$

→ predicts a non-linear relationship between p_T broadening and L. we can look for this at EIC!

QUARK KT BROADENING

Jörg Raufeisen (Physics Letters B 557 (2003) 184–191) =

Dolejsi, Hüfner, Kopeliovich, Johnson, Tarasov, Baier, Dokshitzer, Mueller, Peigne, Schiff, Zakharov, Guo², Luo, Qiu, Sterman, Majumder, Wang², Zhang, Kang, Zing, Song, Gao, Liang, Bodwin, Brodsky, Lepage, Michael, Wilk....color dipole, BDMPS-Z, higher-twist, etc.

pQCD description of quark energy loss on p_T broadening

DIS channels: *stable* hadrons, accessible with 11 GeV JLab future experiment PR12-06-117

meson	с т	mass	flavor content	baryon	сТ	mass	flavor content
π ⁰	25 nm	0.13	ud	р	stable	0.94	ud
π+, π-	7.8 m	0.14	ud	P	stable	0.94	ud
η	170 pm	0.55	uds	Λ	79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I 3 fm	Ι.5	uds
η΄	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm	ĺ	uds	Σ-	44 mm	1.2	ds
fl	8 fm	I.3	uds	Σ 0	22 pm	1.2	uds
Ko	27 mm	0.5	ds	= 0	87 mm	1.3	US
K+, K-	3.7 m	0.49	US		19 000	1.2	de

DIS channels: *stable* hadrons, accessible with 11 GeV JLab future experiment PR12-06-117

EDMEC

meson	ст	mass	flavor content	baryon	сТ	mass	flavor content
π^0	25 nm	0.13	ud	P	stable	0.94	ud
77⁺, 71 -	7.8 m	0.14	ud	p	stable	0.94	ud
η	170 pm	0.55	uds		79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I3 fm	Ι.5	uds
η΄	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	I.2	ds
fl	8 fm	Ι.3	uds	Σ0	22 pm	1.2	uds
Ko	27 mm	0.5	ds				
		0.10			87 mm	1.3	US
K+, K-	3./ m	0.49	US		49 mm	13	de

DIS channels: stable hadrons, accessible with 11 GeV JLab future experiment PR12-06-117 Actively underway with existing 5 GeV data HERMES

meson	сТ	mass	flavor content	baryon	сТ	mass	flavor content
π^0	25 nm	0.13	ud	P	stable	0.94	ud
AT, H	7.8 m	0.14	ud	P	stable	0.94	ud
n	170 pm	0.55	uds		79 mm	1.1	uds
ω	23 fm	0.78	uds	Λ(1520)	I3 fm	Ι.5	uds
η'	0.98 pm	0.96	uds	Σ+	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	1.2	ds
fl	8 fm	1.3	uds	Σ0	22 pm	1.2	uds
K0	27 mm	0.5	ds	ΞΟ	87 mm	1.3	US
K+.K-	3.7 m	0.49	US		10		
					49 mm		

DIS channels: stable hadrons, accessible with 11 GeV JLab future experiment PR12-06-117 Actively underway with existing 5 GeV data HERMES

meson	с т	mass	flavor content	baryon	СТ	mass	flavor content
π	25 nm	0. 3		Neavy	stable	0.94	ud
T T , T T	7.8 m	0.14	ud	P	stable	0.94	ud
η	170 pm	0.55	nesor	ns anc	79 mm	1.1	uds
ω	23 fm	0.78	aryon	S	el 3 fm	Ι.5	uds
η'	0.98 pm	0.96	kiner	natic	24 mm	1.2	US
φ	44 fm		uds	Σ-	44 mm	1.2	ds
fl	8 fm	1.3	udsd		22 pm	1.2	uds
K0	27 mm	0.5	ds		87 mm	1.3	US
K+. K-	3.7 m	0.49	US		10 0000		

LHC Data: color propagation in the hot medium

Study of J/ $\psi \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow \mu^+\mu^-$ production with 2015 Pb+Pb data at $\sqrt{s_{NN}}=5.02$ TeV and pp data at sqrt(s)=5.02 TeV with the ATLAS detector

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-109/

Heavy quarks and fragile mesons similarly suppressed with centrality!

20

Direct measurement of quark energy loss

Collaboration: Miguel Arratia, Cristian Peña, Hayk Hakobyan, Sebastian Tapia, Oscar Aravena, René Rios, Gabriela Hamilton, WB

How to *directly* measure quark energy loss?

- Energy loss: *independent of energy* for thin medium
- "Thin enough" depends on quark energy
- If energy loss is independent of energy, it will produce a <u>shift</u> of the energy spectrum, for higher energies.
- We can look for a <u>shift</u> of the Pb energy spectrum compared to that of the deuterium energy spectrum

Energy spectrum of π^+ produced in C, Fe, Pb compared to that of deuterium, normalized to unity, with energy shifted by ΔE . Acceptance corrected **Cut on X_F >0.1 is applied** Consistent with simple energy shift + unchanged fragmentation

Log of p-values of Kolmogorov-Smirnov test as a function of energy shift ΔE : carbon, iron, lead.

Dashed line corresponds to 95% confidence level

$\overline{\nu/{ m GeV}}$	Carbon	Iron	Lead
2.4-2.6			
2.6 - 2.8			
2.8 - 3.0			
3.0 - 3.2			
3.2-3.4	20-35		75
3.4-3.6	10-25	50	70-85
3.6-3.8	10-25	55	50-70
3.8 - 4.0	5 - 25	40	45-65
4.0 - 4.2	5-10	35-40	50-65

Range of possible energy shift in MeV obtained by Kolmogorov-Smirnov test in v intervals

Approximately proportional to density, as expected. (fixed pathlength) Supports the premise that what we measure is ~energy loss!

Direct Measurement of Quark Energy Loss in CLAS: Conclusions

- It is small in magnitude. Why?
 - Best explanation: *short production time*
 - >500 MeV vs. 50 MeV in Pb
- It increases with nuclear size. Why?
 - Best explanation: *average nuclear density increases*.
 - Rate of change of virtuality nearly the same in all nuclei, therefore:
 - Path length is short, ~independent of nuclear size
 - Nuclear medium has little effect simple to extrapolate to the vacuum case

Direct Measurement of Quark Energy Loss in CLAS: Extraction using a Dynamical Model Oscar Aravena, Hayk Hakobyan, S. Peigne, WB

	L (fm	n) \hat{q} (Ge	V/fm²) $\chi^2_{\ / ext{dof}}$	$\omega_c { m GeV}/{ m fm}^2$
Carbon	4.2	0.14	0.462963	1.23
Iron	3.5	0.14	2.31124	0.86
Lead	2.9	0.13	3.44176	0.55

O. Aravena, MSc Thesis (H. Hakobyan, advisor), UTFSM Valparaíso, 2017

Figure 3.4: Schematic representation of total induced energy loss as a function of the parton energy E (left) and total induced energy loss as a function of the medium size L (right).

 λ = mean free path for multiple scattering

O. Aravena, MSc Thesis (H. Hakobyan, advisor), UTFSM Valparaíso, 2017

• Completely new categories of physics studies - a broad and deep program of studies for the future.

- Completely new categories of physics studies a broad and deep program of studies for the future.
- First direct measurement of quark energy loss

- Completely new categories of physics studies a broad and deep program of studies for the future.
- First direct measurement of quark energy loss
- Extracting characteristic times: semi-inclusive DIS
 - HERMES data we measure the production time, and independently obtain the Lund string constant of *1 GeV/fm*
 - CLAS (exploratory) observation of time dilation, sensitivity to production length distribution form, comparison to HERMES results through Lorentz boost
 - Clear connections to confinement, QCD factorization, Electron Ion Collider, higher energies

- Completely new categories of physics studies a broad and deep program of studies for the future.
- First direct measurement of quark energy loss
- Extracting characteristic times: semi-inclusive DIS
 - HERMES data we measure the production time, and independently obtain the Lund string constant of *1 GeV/fm*
 - CLAS (exploratory) observation of time dilation, sensitivity to production length distribution form, comparison to HERMES results through Lorentz boost
 - Clear connections to confinement, QCD factorization, Electron Ion Collider, higher energies
- Much more in future: 12 GeV and EIC:
 - Heavy quark puzzle; time dilation; pQCD enhanced broadening; flavor dependences; L_p distribution