Recent developments in understanding short-range correlations

Axel Schmidt

MIT

April 13, 2019

Short-range correlations produce a complicated picture.

The short-distance part of the *NN*-interaction is not well-constrained by data.

Figure courtesy of Reynier Cruz-Torres

Short-range correlations produce a complicated picture.

We now have a consistent scale-separated view of SRCs.

Three important properties:

Pair abundances

Pair CM motion

Pair relative motion

2018/19 Publications*

Exp:

- Nature 566, 354 (2019)
- Nature, 560, 617 (2018)
- PRL, In-Print (2019)
- PRL 121, 092501 (2018) arXiv: 1811.01823

(accepted to PRL) 1902.06358 (\w PRL)

*Just by us. More by others...

<u>Theory:</u>

- Physics Letters B 791, 242 (2019)
- Physics Letters B 785, 304 (2018)
- Physics Letters B 780, 211 (2018)
- CPC 42, 064105 (2018)

arXiv: 1812.08051 (\w PLB) 1805.12099 (\w PLB)

In my talk today:

1 Generalized Contact Formalism

- Scale-separated description of SRCs
- Moving from GCF to cross sections
 Modeling abundances, CM motion, relative motion
- 3 Comparisons to data
 - Constraining the short-range *NN* interaction

We have lots of data to compare to!

 $P_{CM} \ll p_{rel.}$

R. Weiss, R. Cruz-Torres et al., PLB 780 211-215 (2018)

When two particles are in close proximity:

$$\Psi(r_{ij} \rightarrow 0) \longrightarrow \varphi^{\alpha}(r_{ij}) \times A(R_{ij}, \vec{r}_{k \neq i,j})$$

When two particles are in close proximity:

$$\Psi(r_{ij} \rightarrow 0) \longrightarrow \varphi^{\alpha}(r_{ij}) \times A(R_{ij}, \vec{r}_{k \neq i,j})$$

$$\rho_2(r_{ij}) \longrightarrow \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(r_{ij})|^2$$

When two particles are in close proximity:

$$\Psi(r_{ij} \rightarrow 0) \longrightarrow \varphi^{\alpha}(r_{ij}) \times A(R_{ij}, \vec{r}_{k \neq i,j})$$

$$\rho_2(r_{ij}) \longrightarrow \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(r_{ij})|^2$$

When two particles have high relative momentum:

$$ilde{
ho}_2(k_{ij}) \longrightarrow \sum_lpha C_lpha | ilde{arphi}^lpha(k_{ij})|^2$$

Universal φ^{α} functions are Schrödinger solutions for a given *NN* potential.

Universal φ^{α} functions are Schrödinger solutions for a given *NN* potential.

When two particles are in close proximity:

$$\rho_2(r_{ij}) \longrightarrow \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(r_{ij})|^2 \quad \checkmark$$

When two particles have high relative momentum:

$$ilde{
ho}_2(k_{ij}) \longrightarrow \sum_{lpha} C_{lpha} | ilde{arphi}^{lpha}(k_{ij})|^2 \checkmark$$

Contacts can be determined from fits to ab initio calculations.

These fits faithfully reproduce high-momentum tails.

... and short-distance two-body densities.

R. Cruz-Torres, A. Schmidt et al., PLB 785 p.304 (2018)

Different *NN* interactions can lead to very different two-body densities.

(N²LO distributions normalized to AV18 distributions at r = 1 fm)

Different *NN* interactions can lead to very different two-body densities.

(s=1 scaled x100)

Relative SRC pair abundances are largely scale and scheme independent.

We can use GCF to calculate this plane-wave reaction.

We can use GCF to calculate this plane-wave reaction.

 $p_{CM} \ll p_{rel} \ll q$

GCF allows us to calculate a spectral function or a decay function.

R. Weiss et al., PLB 790 p 241 (2019)

Two-nucleon knockout:

$$D(E_1, p_1, p_2) = \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(p_{rel})|^2 n(p_{CM}) \delta(E_i - E_f)$$

GCF allows us to calculate a spectral function or a decay function.

R. Weiss et al., PLB 790 p 241 (2019)

Two-nucleon knockout:

$$D(E_1, p_1, p_2) = \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(p_{rel})|^2 n(p_{CM}) \delta(E_i - E_f)$$

Single-nucleon knockout:

$$S(E_1, p_1) = \sum_{\alpha} C_{\alpha} \int \frac{d^3 \vec{p}_2}{(2\pi)^3} |\varphi^{\alpha}(p_{rel})|^2 n(p_{CM}) \delta(E_i - E_f)$$

GCF allows us to calculate a spectral function or a decay function.

R. Weiss et al., PLB 790 p 241 (2019)

Two-nucleon knockout:

$$D(E_1, p_1, p_2) = \sum_{\alpha} C_{\alpha} |\varphi^{\alpha}(p_{rel})|^2 n(p_{CM}) \delta(E_i - E_f)$$

Single-nucleon knockout:

$$S(E_1, p_1) = \sum_{\alpha} C_{\alpha} \int \frac{d^3 \vec{p}_2}{(2\pi)^3} |\varphi^{\alpha}(p_{rel})|^2 n(p_{CM}) \delta(E_i - E_f)$$

 $d\sigma \propto \sigma_{eN} \cdot S(E_1, p_1)$

Ingredients to the GCF cross section

Relative momentum $\longrightarrow NN$ interaction

- SRC pair abundances \longrightarrow estimate from ab initio calcs.
- Pair center-of-mass motion

We measured the CM momentum distribution and confirmed its width is small.

E.O. Cohen et al., PRL 121 092501 (2018)

measured (corrected)

We measured the CM momentum distribution and confirmed its width is small.

E.O. Cohen et al., PRL 121 092501 (2018)

We can compare to data from the CLAS EG2 experiment.

CLAS's large-acceptance is crucial for detecting multi-particle final states.

CLAS's large-acceptance is crucial for detecting multi-particle final states.

We've selected events to minimize competing reactions.

We've selected events to minimize competing reactions.

We've selected events to minimize competing reactions.

Anti-parallel kinematics

SRC events are selected in kinematics that minimize final-state interactions.

\vec{p}_{miss} is anti-parallel to \vec{q} for C, AI, Fe, Pb.

Figure courtesy of M. Sargsian

We remain anti-parallel over our p_{miss} range.

Connecting the model to data

Connecting the model to data

 Generate events according to model

- Generate events according to model
- 2 Radiative effects

- Generate events according to model
- 2 Radiative effects
- 3 Transparency/SCX using Glauber

- Generate events according to model
- 2 Radiative effects
- 3 Transparency/SCX using Glauber
- 4 Detector acceptance

- Generate events according to model
- 2 Radiative effects
- 3 Transparency/SCX using Glauber
- 4 Detector acceptance
- 5 Same event selection as data

We compare our GCF calculation to several reactions.

- ¹²C(e, e'np)
 - $\bullet 0.4 < p_{miss} < 1.0 \quad {\rm GeV}/c$
 - Only a few dozen neutron events
 - arXiv:1810.05343, just accepted to PRL

■ ${}^{12}C(e, e'p)$ and ${}^{12}C(e, e'pp)$

- $0.4 < p_{miss} < 1.0$ GeV/c
- Few hundred to few thousand events
- Analysis under review (still preliminary!)

 $^{12}C(e, e'pp)/^{12}C(e, e'np)$

M. Duer, A. Schmidt et al., accepted to PRL (2019)

Comparison to
$${}^{12}C(e, e'p)$$
 and ${}^{12}C(e, e'pp)$

Carbon data only

Contacts determined from fits to ab initio VMC

Comparison to ${}^{12}C(e, e'p)$ and ${}^{12}C(e, e'pp)$

Carbon data only

Contacts determined from fits to ab initio VMC

- NN interactions
 - AV18
 - Local χPT N2LO (1 fm cut-off)

Comparison to ${}^{12}C(e, e'p)$ and ${}^{12}C(e, e'pp)$

- Carbon data only
 - Contacts determined from fits to ab initio VMC
- NN interactions
 - AV18
 - Local χPT N2LO (1 fm cut-off)
- Model uncertainty from:

Contacts	SCX prob.	• $A - 2$ excitation E^*	■ <i>e</i> [−] res.
σ _{CM}	Transparency	■ <i>p</i> _{rel.} cut-off	p res.

The model accurately predicts kinematics.

Missing momentum distributions show sensitivity to the *NN* interaction.

We can verify no significant FSIs.

We can verify no significant FSIs.

- Different p_{miss} dependence for e'p, e'pp events
- No excess transverse missing momentum

We can verify no significant FSIs.

- Different p_{miss} dependence for e'p, e'pp events
- No excess transverse missing momentum
- No A-dependence in distributions!

Missing-momentum and missing-energy

(e, e'pp)/(e, e'p) ratio

Isospin-dependence of the repulsive core

To recap:

1 Generalized Contact Formalism

To recap:

- 1 Generalized Contact Formalism
- 2 GCF cross sections

To recap:

- 1 Generalized Contact Formalism
- 2 GCF cross sections
- 3 Comparisons to data

SRC data can constrain the NN interaction up to 1 GeV/c!

Different observables have different scale and scheme dependence.

Different observables have different scale and scheme dependence.

Different observables have different scale and scheme dependence.

We now have a consistent scale-separated view of SRCs.

Three important properties:

Pair abundances

Pair CM motion

Pair relative motion

Other talks at this meeting:

In this session: Or Hen

Later today: Dien Nguyen (D15)

Sunday Morning: Rey Cruz-Torres (G05) Florian Hauenstein (H15) Holly Szumila-Vance (H15)

Sunday Afternoon:

Afroditi Papadopoulou (J12) Eli Piasetzky (L05) Holly Szumila-Vance (L05)

Monday: Holly Szumila-Vance (S01)

BACK-UP

Model cross section

.0

$$\frac{d^{\circ}\sigma}{dQ^{2}dx_{B}d\phi_{e}d^{3}\vec{p}_{CM}d\Omega_{2}} = \frac{\sigma_{eN}}{32\pi^{4}}n(\vec{p}_{CM})\mathcal{J}\sum_{\alpha}C_{\alpha}|\vec{\varphi}^{\alpha}(|\vec{p}_{rel}|)|^{2}$$
$$\mathcal{J} = \frac{E_{1}'E_{2}p_{2}^{2}}{|E_{2}(p_{2}-Z\cos\theta_{Z,2})+E_{1}'p_{2}|}\frac{\omega}{2E_{beam}E_{e}x_{B}}$$
$$\vec{Z} \equiv \vec{q}+\vec{p}_{CM}$$

Leading and recoil protons are distinct.

Leading and recoil protons are distinct.

71

Leading and recoil protons are distinct.

Missing momentum distributions show sensitivity to the *NN* interaction.

Implementation of single charge exchange (SCX) and transparency

Colle, Cosyn, Ryckebusch, PRC 034608 (2016)

Glauber calc of avg. probabilities:

- Leading $p \leftrightarrow n$
- Recoil $p \leftrightarrow n$
- Transparency factor for NN
- Transparency factor for N

Inclusive scaling relies on kinematical assumptions.

Inclusive scaling relies on kinematical assumptions.

