Deeply Virtual Compton Scattering at 10.6 GeV with CLAS12 at Jefferson Lab

Guillaume CHRISTIAENS (University of Glasgow, CEA Saclay) for the CLAS Collaboration

Tuesday, June 25, 2019
Deeply Virtual Compton Scattering

- GPDs appear in the DVCS amplitude through Compton Form Factors (CFF) such as:

\[\mathcal{H} = \int_{-1}^{1} H(x, \xi, t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) dx \]

Generalized Partons Distributions (GPDs)

- **Tomography** of the nucleon
- Contribution of quark orbital angular momentum to the proton spin
Beam-spin asymmetry

- Extraction of GPDs from DVCS with polarized lepton beam and unpolarized target

- Photon leptoproduction beam-spin asymmetry:

\[A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \]

- At leading order the asymmetry is:

\[A_{LU} = \frac{A \sin(\phi)}{1 + B \cos(\phi)} \]

\[A = \frac{s_1^T}{\kappa c_0^{BH} + c_0^T} \]

\[B = \frac{\kappa c_1^{BH} + c_1^T}{\kappa c_0^{BH} + c_0^T} \]

combinations of CFF

\[s_1^T \propto Im(F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}) \]
Selection and exclusivity cuts

Final state with:
- High energy \textbf{electron}
- High energy \textbf{photon}
- Proton
- \(Q^2 > 1 \text{ GeV}^2 \)
- \(W^2 > 4 \text{ GeV}^2 \)

Selection of exclusive DVCS events:
- \textbf{Missing mass} \(ep \rightarrow ep\gamma X \)
- \textbf{Missing energy} \(ep \rightarrow ep\gamma X \)
- \textbf{Cone angle}: angle between measured and exclusive missing photon

\(\pi^0 \) \textbf{contamination} \(ep \rightarrow ep\pi^0 \rightarrow ep\gamma\gamma \)
- Different methods have been implemented

Before exclusivity cuts

After exclusivity cuts
First look at beam-spin asymmetry

Preliminary asymmetry:

\[A_{LU} = \frac{1}{P} \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)} \]

- **P** polarization
- **\(N^+ / N^-\)** number of events with helicity + / -

- Background not yet subtracted
- Integrated over all kinematic domain (average \(Q^2 = 2.5 \text{ GeV}^2\), \(x_B = 0.22\))
Conclusion

- **Preliminary asymmetry** has been extracted

- **Less than 2% of the data** to be collected is shown here

- **Ongoing work** to study cuts, background and systematical effects

![Raw Beam-Spin Asymmetry](image)