A fresh look at the excited baryon spectrum: What have we learned?

Volker Credé

Florida State University, Tallahassee, FL

MENU 2019

Carnegie Mellon University
Pittsburgh
06/04/2019

Outline

- Introduction
 - Spectroscopy of Nucleon Resonances
 - Experimental Approach
- Experimental Results
 - Polarization Measurements
 - Observables in Reactions off Neutrons
 - What have we learned?
- Structure of Excited Baryons
 - Transition (Helicity) Amplitudes
- Summary and Outlook

Outline

- Introduction
 - Spectroscopy of Nucleon Resonances
 - Experimental Approach
- Experimental Results
 - Polarization Measurements
 - Observables in Reactions off Neutrons
 - What have we learned?
- Structure of Excited Baryons
 - Transition (Helicity) Amplitudes
- Summary and Outlook

QCD Phases and the Study of Baryon Resonances

- Chiral symmetry is broken
- Quarks acquire mass Baryon resonances occur
- Color confinement emerges

hadron phase

RPP (u, d, s, c) baryons not sufficient to describe freeze-out behavior.

(e.g. A. Bazavov et al., PRL 113 (2014) 7, 072001)

Non-Perturbative QCD

How does QCD give rise to excited hadrons?

- What is the origin of confinement?
- How are confinement and chiral symmetry breaking connected?
- What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain quark confinement?

Baryons: What are the fundamental degrees of freedom inside a nucleon? Constituent quarks? How do the degrees change with varying quark masses? Mesons: What are the properties of the predicted states beyond simple quark-antiquark systems (hybrid mesons, glueballs, tetraquarks, ...)?

→ Gluonic Excitations provide a measurement of the excited QCD potential. Hybrid baryons are also possible ...

Baryon Multiplets and N*/Hyperon Spectroscopy

Hadron Spectroscopy: The Light Flavors

The strong coupling confines quarks and breaks chiral symmetry, and so defines the world of light hadrons.

Baryons are special because

Their structure is most obviously related to the color degree of freedom, e.g. $|\Delta^{++}\rangle = |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$.

Many Y* QN not measured: (Quark model assignments)

 \rightarrow many Ξ^* and Ω^* , etc.

Spin and Parity Measurement of the Λ(1405) Baryon

K. Moriya et al. [CLAS Collaboration], Phys. Rev. Lett. 112, 082004 (2014)

Data for $\gamma p \to K^+ \Lambda(1405)$ support $J^P = \frac{1}{2}$

$$J^P = \frac{1}{2}^-$$

- Decay distribution of $\Lambda(1405) \rightarrow \Sigma^{+}\pi^{-}$ consistent with J = 1/2.
- Polarization transfer, \vec{Q} , in $Y^* \rightarrow Y\pi$:
 - S-wave decay: \vec{Q} independent of θ_Y

From the Atomic Spectrum of Hydrogen ...

Development of the theory of atomic structure required

- Hydrogen Atom (ground state)
- Together with the emission (absorption) spectrum.

Bohr model → QFD

Understanding the nucleon requires

- proton (ground state)
- Together with its excitation spectrum.

Quark model → strong QCD

Atomic Spectrum of Hydrogen

Baryons are broad and overlapping ...

Extraction of Resonance Parameters in N* Physics

- Double-polarization measurements
- Measurements off neutron and proton to resolve isospin contributions:

 Re-scattering effects: Large number of measurements (and reaction channels) needed to extract full scattering amplitude.

Coupled Channels

Jülich - GW, Gießen, Kent State, etc. ANL - Osaka, Schwinger-Dyson, ...

Table representing CLAS@JLab measurements

	σ	Σ	Т	P	E	F	G	Н	T _{x'}	T _{z'}	L _{x'}	L _z ,	O _{x'}	O _{z'}	$C_{x'}$	$C_{z'}$
									**	targets	**	-	^	-	^	-
$p \pi^0$	✓	✓	✓	(✓)	✓	✓	✓	✓								
$n \pi^+$	✓	✓	✓	(√)	✓	✓	✓	✓	V	/ pul	blishe	b				
$p\eta$	✓	✓	✓	(√)	\checkmark	✓	✓	\checkmark	V	aco	guired	or und	der ana	alysis		
$p \eta'$	✓	✓	✓	(√)	\checkmark	✓	✓	\checkmark			-			-		
$p\omega(\phi)$	✓	✓	✓	(✓)	✓	✓	✓	✓		7	ensor	polari	zation,	SDM	s	
$K^+ \Lambda$	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$K^+ \Sigma^0$	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$\kappa^0 \Sigma^+$	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
								Neut	ron (deu	iteron) ta	argets					
p π -	✓	✓			✓		✓									
$K^- \Sigma^+$	✓	✓	✓	✓	✓	✓	✓									
K^0 Λ	✓	✓	✓	✓	√ *	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$K^0 \Sigma^0$	✓	✓	✓	✓	√ *	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Complete Experiments?

* published

"Uncertainty is an uncomfortable position. But Certainty is an absurd one."

Voltaire

Table representing CLAS@JLab measurements

	σ	Σ	Т	Р	Ε	F	G	Н	$T_{x'}$	T _{z′}	L _{x′}	L _z ,	0,,	O _{z′}	$C_{x'}$	$C_{z'}$
									Proton	targets						
$p \pi^0$	✓	✓	✓	(√)	✓	✓	✓	✓								
$n \pi^+$	✓	✓	✓	(√)	✓	✓	✓	✓	v	p u	blishe	d				
$p \eta$	✓	✓	✓	(√)	✓	✓	✓	✓		ac	auired	or un	der ana	alysis		
$p \eta'$	✓	✓	✓	(√)	✓	✓	✓	\checkmark			-			-		
$p\omega(\phi)$	✓	✓	✓	(√)	✓	✓	✓	✓		1	ensor	polari	zation,	SDM	s	
<i>K</i> ⁺ Λ	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$K^+ \Sigma^0$	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$K^0 \Sigma^+$	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
								Neut	ron (deu	iteron) t	argets					
	√	√			√		√									
$K^- \Sigma^+$	✓	1	✓	✓	✓	✓	✓									
K^0 Λ	√	✓	✓	✓	√ *	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
$K^0 \Sigma^0$	1	1	✓	✓	√ *	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

In addition, two-meson reactions are being analyzed:

* published

$$\gamma p \to (p\,\rho) \to p\,\pi^+\pi^- \text{ (CLAS)}, \quad \gamma p \to p\,\pi^0\pi^0, \quad p\,\pi^0\eta, \quad p\,\pi^0\omega \text{ (ELSA, MAMI, etc.)}$$

Outline

- Introduction
 - Spectroscopy of Nucleon Resonances
 - Experimental Approach
- Experimental Results
 - Polarization Measurements
 - Observables in Reactions off Neutrons
 - What have we learned?
- Structure of Excited Baryons
 - Transition (Helicity) Amplitudes
- Summary and Outlook

Spectrum of *N** Resonances

V. C. & W. Roberts, Rep. Prog. Phys. **76** (2013)

Spectrum of *N** **Resonances**

N*	$J^P(L_{2I,2J})$	2010	2016	
N(1440)	1/2 ⁺ (P ₁₁)	****	* * **	
N(1520)	$3/2^{-}(D_{13})$	****	****	
N(1535)	1/2- (S ₁₁)	* * **	* * **	_
N(1650)	1/2 ⁻ (S ₁₁)	* * **	* * **	
N(1675)	$5/2^{-}(D_{15})$	****	****	
N(1680)	5/2 ⁺ (F ₁₅)	****	****	
N(1685)	-/- (-15)		*	
N(1700)	$3/2^{-}(D_{13})$	***	***	
N(1710)	1/2 ⁺ (P ₁₁)	***	***	
N(1720)	3/2 ⁺ (P ₁₃)	****	* * **	
N(1860)	5/2 ⁺		**	
N(1875)	3/2-		***	
N(1880)	1/2+		**	
N(1895)	1/2-		**	
N(1900)	$3/2^+ (P_{13})$	**	***	
N(1990)	$7/2^{+}(F_{17})$	**	**	
N(2000)	$5/2^{+}(F_{15})$	**	**	
-N(2080)	D ₁₃	**		
N(2090)	S ₁₁	*		
N(2040)	3/2+		*	
N(2060)	5/2		**	
N(2100)	1/2 ⁺ (P ₁₁)	*	*	
N(2120)	3/2-		**	13/2-
N(2190)	$7/2^{-}(G_{17})$	****	* * **	13/2-
-N(2200)	D ₁₅	**		

V.C. & W. Roberts, Rep. Prog. Phys. **76** (2013)

Observation of Decay Cascades in $\gamma p \rightarrow p \pi^0 \pi^0$

Decays observed in BnGa PWA into, e.g.

$$N(1880) 1/2^{+}$$
 $N(1900) 3/2^{+}$
 $N(2000) 5/2^{+}$
 $N(1990) 7/2^{+}$
 $N(1990) 7/2^{+}$
 $N(1990) 7/2^{+}$
 $N(1990) 7/2^{+}$
 $N(1990) 7/2^{+}$
 $N(1990) 7/2^{+}$

→ Quartet of (70,
$$2_2^+$$
) with $S = \frac{3}{2}$.

Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

Nucleon states with $S=\frac{3}{2}$ require spatial wave functions of mixed symmetry. For L=2 the wave functions do have equal admixtures of \mathcal{M}_S and

$$\mathcal{M}_{\mathcal{A}} = \left[\phi_{0p}(\vec{\rho}) \times \phi_{0p}(\vec{\lambda}) \right]^{(L=2)},$$

a component in which both the ρ and the λ oscillator are excited simultaneously.

Sokhoyan, Gutz, V. C. et al., EPJ A 51, no. 8, 95 (2015)

→ Refit includes CLAS cross-section data on $\gamma p \rightarrow p \pi^+ \pi^-$ (E. Golovatch *et al.*, Phys. Lett. B **788**, 371 (2019))

Polarization Transfer in $\vec{\gamma}p \rightarrow K^+ \vec{\Lambda}$: $C_x \& C_z$

Polarization Measurements

Polarization in $\vec{\gamma}p \rightarrow K^+ \vec{\Lambda}$: $O_x \& O_z + T \& \Sigma$

C. A. Paterson et al. [CLAS Collaboration], Phys. Rev. C 93, 065201 (2016)

Polarization Observables in $\vec{\gamma}p \rightarrow K^+ \Lambda$

Additional $N^* \frac{3}{2}^+$, $N^* \frac{5}{2}^+$ needed in BnGa refit.

comparison of kinematic coverage

Cross Sections for $\gamma oldsymbol{p} o oldsymbol{\mathcal{K}}^{0} \, \Sigma^{+} o oldsymbol{p} \, \pi^{+} \pi^{-} \pi^{0}$

(Complete) Experiments in $\gamma p \rightarrow p \omega$

 Event-based background subtraction (event-based dilution factors)

$$\rightarrow \gamma p \rightarrow p \pi^+ \pi^- \checkmark \gamma p \rightarrow p \pi^+ \pi^- (\pi^0) \checkmark$$

In analogy to pseudoscalar mesons:

$$\begin{split} \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} &= \sigma_0\,\{\,1-\,\delta_{\,I}\,\Sigma\cos2\phi \\ &\quad + \,\Lambda_{\,X}\,(\,-\delta_{\,I}\,H\sin2\phi \,+\,\delta_{\,\odot}\,F\,) \end{split}$$
 published (+ SDME's)
$$\quad -\,\Lambda_{\,Y}\,(\,-T\,+\,\delta_{\,I}\,P\cos2\phi) \\ &\quad -\,\Lambda_{\,Z}\,(\,-\,\delta_{\,I}\,G\sin2\phi \,+\,\delta_{\,\odot}\,E\,)\} \end{split}$$
 in progress
$$\quad -\,\Lambda_{\,Z}\,(\,-\,\delta_{\,I}\,G\sin2\phi \,+\,\delta_{\,\odot}\,E\,) \end{split}$$

 $\phi=\Psi\equiv$ Angle between $p\omega$ production plane and the photon polarization plane in the overall CM frame.

 $\Phi \equiv$ Azimuthal angle of normal to the ω decay plane in helicity frame - quantization axis in the direction opposite the recoiling proton in the ω rest frame.

The ω is a vector meson (A. I. Titov and B. Kampfer, Phys. Rev. C 78, 038201 (2008))

$$2\pi W^{f}(\Phi, \Psi) = 1 - \Sigma_{\Phi}^{f} \cos 2\Phi - P_{\gamma} \Sigma_{D}^{f} \cos 2\Psi + P_{\gamma} \Sigma_{d}^{f} \cos 2(\Phi - \Psi)$$

$$\Sigma_b^h = \Sigma_b^r = 2\rho_{11}^1 + \rho_{00}^1$$
 $-\frac{1}{2}\Sigma_d^h = \Sigma_d^r = \rho_{1-1}^1$ $-\frac{1}{2}\Sigma_\Phi^h = \Sigma_\Phi^r = -\rho_{1-1}^0$

Pol. SDMEs: B. Vernarsky (CMU), PhD dissertation

The Beam Asymmetry in $\vec{\gamma} p \rightarrow p \omega$ (CLAS-g9b)

F Observable in $\vec{\gamma} \, \vec{p} \rightarrow p \, \omega$ (CLAS g9b)

Polarized Cross Section

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \sigma_0 \left\{ 1 - \delta_I \sum \cos 2\phi + \Lambda_X \left(-\delta_I H \sin 2\phi + \delta_\odot F \right) - \Lambda_Y \left(-T + \delta_I P \cos 2\phi \right) - \Lambda_Z \left(-\delta_I G \sin 2\phi + \delta_\odot E \right) \right\}$$

P. Roy et al. [CLAS Collaboration], PRL **122**, 162301 (2019)

Helicity Asymmetry in $\vec{\gamma} \, \vec{p} \rightarrow p \, \omega$ (CLAS g9a)

BnGa (coupled-channels) PWA

- Dominant P exchange
- Complex 3/2⁺ wave

 - W ≈ 1.9 GeV
- N(1895) 1/2⁻ (new state)
- N(1680), N(2000) 5/2⁺
- 7/2 wave > 2.1 GeV
- CLAS-g9a
- CBELSA/TAPSPhys. Lett. B 750, 453 (2015)

Z. Akbar *et al.* [CLAS Collaboration], PR C **96**, 065209 (2017)

Brief Summary of Measurements off Neutron (CLAS)

$$\gamma n \to p \, \pi^ \sigma$$
, E observable (P. T. Mattione *et al.*, Phys. Rev. C **96**, 035204 (2017))
$$\gamma n \to K^0 \, \Sigma^0$$
 E observable (D. H. Ho *et al.*, Phys. Rev. C **98**, 045205 (2018))

 $\gamma n \rightarrow K^0 \Lambda$ σ , *E* observable

Summary of neutron results:

- No introduction of new resonances so far.
- Helicity amplitudes, $N(1900) \frac{3}{2}^+, N(1720) \frac{3}{2}^+.$
- Convergence of groups on $\gamma nN^* (A_n^h)$ for $N(2190) \frac{7}{2}^-$.

The impact of photoproduction on baryon resonances		re	ack: d: ue:	Decay m PDG 200 PDG 200 BESIII re	04 18		resonan	ces	**** *** **		Existenc	ce is certain e is very like f existence is existence is	y. fair.			
		overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta\prime$	$N_{1440}\pi$	$N_{1520}\pi$	$N_{1535}\pi$	$N_{1680}\pi$
N	1/2+	****														
N(1440)	1/2+	****	****	****	****	***										
N(1520)	3/2-	****	****	****	****	**	****									
N(1535)	1/2-	****	****	****	***	*	****									
N(1650)	1/2-	****	****	****	***	*	****	***					*			
N(1675)	5/2-	****	***	****	****	***	*	*	*	**				*		
N(1680)	5/2+	****	****	****	****	***	*			****						
N(1700)	3/2-	***	**	***	***	*	*	**	*	*						
N(1710)	1/2+	****	****	****	**		***	**	*	*	*				*	
N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	**	*					
N(1860)	5/2+	**	*	**		*	*									
N(1875)	3/2-	***	**	**	*	**	*	*	*	*	*	*	*			
N(1880)	1/2+	***	**	*	**	*	*	**	**		**				*	
N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****	*			
N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**	*	*	**				
N(1990)	$7/2^{+}$	**	**	**	*	*	*	**	**							
N(2000)	$5/2^{+}$	**	**	**	**	*	*	*	*		*					
N(2040)	$3/2^{+}$	*		*												
N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*		*	*		*
N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**			***	
N(2120)	$3/2^{-}$	***	***	***	**	**		**	*		*	*	*	*	*	
N(2190)	7/2-	****	****	****	****	**	*	**	*	*	*					
N(2220)	9/2+	****	**	****			*	*	*							
N(2250)	$9/2^{-}$	****	**	****			*	*	*							
N(2300)	$1/2^{+}$	*		*												
N(2570)	5/2-	*		*												
N(2600)		***		***				7	7		-					
N(2700)	$13/2^{+}$	**		**				•	•		•					

Based on results at Jefferson Lab, ELSA, MAMI, ...

Outline

- Introduction
 - Spectroscopy of Nucleon Resonances
 - Experimental Approach
- Experimental Results
 - Polarization Measurements
 - Observables in Reactions off Neutrons
 - What have we learned?
- Structure of Excited Baryons
 - Transition (Helicity) Amplitudes
- Summary and Outlook

The N^* program has two main components:

- Establish the systematics of the spectrum
 Provides information on the nature of the effective degrees of freedom in strong QCD.
- Probe resonance transitions at different distance scales (Q² dependence)
 Reveals the structure of N* states.

D. Carman, Monday, Rangos 2

Helicity Amplitudes for the "Roper" Resonance

Consistency between both channels ($N\pi\pi$, $N\pi$): sign change, magnitude, ...

- ullet At short distances (high Q^2), Roper behaves like radial excitation.
- Low-Q² behavior not well described by LF quark models
 - → ANL Osaka achieves good description by adding meson-baryon interactions.
 DSE prediction: Mass of the quark core of the first radial excitation = 1.73 GeV.
- → Gluonic excitation likely ruled out!

First Nucleon Excitations: Helicity Amplitude $A_{1/2}$

Non-quark contributions are significant at $Q^2 < 2.0 \text{ GeV}^2$

→ The 1st radial excitation of the q³ core emerges as the probe penetrates the MB cloud.

Non-quark contributions are significant at $Q^2 < 1.5 \text{ GeV}^2$

→ State consistent with the 1st orbital excitation of the nucleon.

Outline

- Introduction
 - Spectroscopy of Nucleon Resonances
 - Experimental Approach
- Experimental Results
 - Polarization Measurements
 - Observables in Reactions off Neutrons
 - What have we learned?
- Structure of Excited Baryons
 - Transition (Helicity) Amplitudes
- Summary and Outlook

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- ② Can we identify unconventional states in the strangeness sector, e.g. a $\Lambda(1405)$ or N(1440)? What is the situation with the $(20, 1_2^+)$?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - Probe the running quark mass and determine the relevant degrees of freedom at different distance scales
- How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

Open Issues in (Light) Baryon Spectroscopy

- What are the relevant degrees of freedom in (excited) baryons?
 - → Can the high-mass states be described by the dynamics of three flavored quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics?
- ② Can we identify unconventional states in the strangeness sector, e.g. a $\Lambda(1405)$ or N(1440)? What is the situation with the $(20, 1_2^+)$?
- What is the nature of non-quark contributions, e.g. meson-baryon cloud or dynamically-generated states?
 - Probe the running quark mass and determine the relevant degrees of freedom at different distance scales.
- 4 How do nearly massless quarks acquire mass? (as predicted in DSE and LQCD)

Outlook

Baryon Spectroscopy: Are we there, yet? Certainly not ...

New era in the spectroscopy of strange baryons (GlueX, LHCb, PANDA, ...)

- Mapping out the spectrum of ≡ baryons is the primary motivation (including parity measurements); some hope for peak hunting.
- Ground-state Ξ in $\gamma p \to KK \Xi$ will allow the spectroscopy of Σ^*/Λ^* states.

The multi-strange baryons provide a missing link between the light-flavor and the heavy-flavor baryons. Also:

- **1** Do the lightest excited Ξ states in certain partial waves decouple from the $\Xi\pi$ channel, confirming the flavor independence of confinement?
- E baryons as a probe of excited hadron structure?
 - → Measurements of the isospin splittings in spatially excited Ξ states appear possible for the first time (similar to n-p or $\Delta^0 \Delta^{++}$).

Possible Production Mechanisms

→ Ashley Ernst, Friday, Rangos 2

$$K^+(\Xi^-K^+),\ K^+(\Xi^0K^0),\ K^0(\Xi^0K^+)$$

→ Cross sections, beam asymmetries (similar to $p \pi \pi \& p KK^*$)

At other facilities (for comparison):

$$\begin{array}{lll} \mathcal{K}^- p \to \mathcal{K}^+ \equiv^{*-} & \text{J-PARC} \\ \mathcal{K}_L p \to \mathcal{K}^+ \equiv^{*0} & \text{Hall D?} \\ pp \to \equiv^* \mathcal{X} & \text{LHCb} \\ \overline{p} p \to \equiv^* \overline{\equiv} & \overline{p} \text{ANDA} \\ e^+ e^- \to \equiv^* \mathcal{X} & \text{Belle II, BES III} \end{array}$$

^{*} W. Roberts et al., Phys. Rev. C 71, 055201 (2005)

CLAS g12: Total Cross Sections of $(\Xi^-)^*$

J. T. Goetz *et al.* [CLAS Collaboration], Phys. Rev. C **98**, 062201 (2018)

No statistically significant structures beyond $\Xi(1530)$ peak: Different reaction (production) mechanism for Ξ^* states?

CLAS g11a: Excited States in $\gamma p \to K^+K^+\pi^-(X)$

From the paper: Although a small enhancement is observed in the $\Xi^0\pi^-$ invariant mass spectrum near the controversial 1-star Ξ^- (1620) resonance, it is not possible to determine its exact nature without a full partial wave analysis.

Phys. Rev. C 76, 025208 (2007)

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors
- → CLAS 12 and GlueX at Jefferson Lab
 Plenary talks: Sean Dobbs, Monday
 Annalisa D'Angelo, Thursday

CLAS g11a: Excited States in $\gamma p \to K^+K^+\pi^-(X)$

From the paper: Although a small enhancement is observed in the $\Xi^0\pi^-$ invariant mass spectrum near the controversial 1-star Ξ^- (1620) resonance, it is not possible to determine its exact nature without a full partial wave analysis. Phys. Rev. C **76**, 025208 (2007)

Need high-statistics, high-energy data from an experiment designed to see Ξ states:

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors
- CLAS 12 and GlueX at Jefferson Lab Plenary talks: Sean Dobbs, Monday Annalisa D'Angelo, Thursday

Introduction Experimental Results Structure of Excited Baryons Summary and Outlook

Jefferson Lab Upgrade to 12 GeV

Hall D

10.1 GeV achieved in Fall of 2014

2016: 2 pb⁻¹ (commissioning data)

2017: 20.8 pb $^{-1}$ (first physics data)

→ Used for most physics analyses

2018: 51 pb $^{-1}$ (Spring data)

→ GlueX Phase-I completed this Fall

→ Justin Stevens, Tuesday, Rangos 3

Possible Production Mechanisms

Courtesy of Ashley Ernst (FSU)

Introduction Experimental Results Structure of Excited Baryons Summary and Outlook

Acknowledgement

This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-92ER40735.