Proton Deeply Virtual Compton Scattering at 10.6 GeV with CLAS12 at Jefferson Lab

Guillaume CHRISTIAENS (CEA Saclay, University of Glasgow) Presented by Joshua Artem Tan (Kyungpook National University) for the CLAS Collaboration

Thursday, October 15, 2019

Introduction

- Scattering experiments to access the proton structure:
 - 1950's Form Factors: transverse spatial distributions of partons (elastic scattering)
 - 1960's Parton Distribution Functions: longitudinal momentum of partons (deep inelastic scattering)
 - 1990's Generalized Partons
 Distributions (GPDs): correlations of
 longitudinal momentum and transverse
 position (deep exclusive processes)

Generalized Parton Distributions

Tomography of the nucleon

$$\rho(x, \vec{r_{\perp}}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{\Delta_{\perp}} \cdot \vec{r_{\perp}}} H(x, \xi = 0, t = -\Delta_{\perp}^2)$$
Burkardt, 2003

 Δ_{\perp} transverse momentum transfer Distribution of longitudinal momentum x and transverse position $\vec{r_{\perp}}$

• Contribution of quark orbital angular momentum to the proton spin: $J = \int_{-1}^{1} x \Big[H(x,\xi,0) + E(x,\xi,0) \Big] dx$ Ji, 1997

3

Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering

 GPDs appear in the DVCS amplitude through Compton Form Factors (CFF) such as:

$$\mathcal{H} = \int_{-1}^{1} H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right) dx$$

 Experimentally we measure photon leptoproduction: interference of DVCS and Bethe-Heitler (BH)

$$\sigma_{(ep \to ep\gamma)} = |DVCS|^2 + |BH|^2 + Interference$$

 r^* FF(t)pBH at leading order

Beam-spin asymmetry

- Extraction of GPDs from DVCS with polarized lepton beam and unpolarized target
- Photon leptoproduction beam-spin asymmetry:

$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

• At leading order the asymmetry is:

$$A_{LU} \simeq \frac{A \sin(\phi_{trento})}{1 + B \cos(\phi_{trento})} \qquad A = \frac{s_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}}$$

$$B = \frac{\kappa c_1^{BH} + c_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}}$$

 γ'

 ϕ_{trento}

e'

e

 κ known function of kinematical variables

$$c_1^{\mathcal{I}}, \ c_0^{\mathcal{I}}, \ s_1^{\mathcal{I}}$$
 combinations of CFF

$$s_1^{\mathcal{I}} \propto Im(F_1\mathcal{H} + \xi(F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E})$$

 $F_1, F_2 \quad \text{form factors}$

CLAS12 installation complete

Jefferson Lab

 CEBAF upgraded to deliver longitudinally polarized 12GeV electron beam CLAS12 data taking started in 2018

- 10.6 GeV electron beam
- Unpolarized liquid hydrogen target

CLAS12

Forward Detector (FD):

- TORUS magnet
- Drift chamber system
- HT Cherenkov Counter
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter
- RICH detector
- Forward Tagger

Central Detector (CD):

- SOLENOID magnet
- Barrel Silicon Tracker
- Micromegas
- Central Time-of-Flight
- Central Neutron detector

DVCS event in CLAS12

Typical DVCS event:

- Electron in the forward detector (torus, DC, ToF, Cherenkov, Calorimeter)
- Photon in the forward tagger (calorimeter)
- Proton in the central detector (solenoid, Silicon, Micromegas and ToF)

DVCS kinematics and particle selection

- High energy electron
 E_{electron} > 2 *GeV*
- High energy photon
 *E*_{photon} > 2 *GeV*
- Proton

Positive charges β vs momentum p

Kinematical cuts:

• virtuality $Q^2 = -q^2 > 1 \ GeV^2$

•
$$W^2 = (p+q)^2 > 4 \, GeV^2$$

Exclusivity

Selection of exclusive DVCS events:

- Missing mass $ep \rightarrow ep\gamma X$
- Missing energy
- Photon cone angle (angle between measured photon and exclusive photon)
- Missing transverse momentum
- Missing mass

 $ep \rightarrow e\gamma X$

Raw beam-spin asymmetry

Beam-spin asymmetry:

$$A_{LU} = \frac{1}{P} \frac{N^+(\phi_{trento}) - N^-(\phi_{trento})}{N^+(\phi_{trento}) + N^-(\phi_{trento})}$$

- *P* polarization N^+ / N^- number of events with helicity + / -
 - Background not yet subtracted
 - Only statistical errors
 - Integrated over all kinematic domain

Binning

A total of 16 bins:

Q2

12

• 8 Q^2 / x_B bins: 10 Ξ Bins I to 8 8 2 t bins: Bins a 8 6 t $-\frac{1}{Q^2} < 0.25$ 6 5 Bins b $-\frac{t}{Q^2} > 0.25$ 2 0` 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

xВ

10³

10²

10

First look at beam-spin asymmetry

Raw asymmetry:

without background subtraction

Contamination from pion background

Main source of background come from π^0 electroproduction. Estimated using π^0 from data.

Black: total DVCS candidates (after cuts)

Red: estimated π^0 contamination

Subtracted beam-spin asymmetry

Subtracted asymmetry:

Summary and outlook

guillaum@jlab.org

- Data shown correspond to about 6% of approved beam time
 - more bins
- Preliminary beam-spin asymmetry taking into account pion contamination
- Work still ongoing:
 - Fiducial cuts
 - Exclusivity cuts
 - Systematics

