Deeply Virtual Compton Scattering on the proton at 10.6 GeV with CLAS12 at Jefferson Lab

Guillaume CHRISTIAENS (CEA Saclay, University of Glasgow) for the CLAS Collaboration

August 1, 2019

Introduction

- Scattering experiments to access the proton structure:
 - 1950's Form Factors: transverse spatial distributions of partons (elastic scattering)
 - 1960's Parton Distribution Functions: longitudinal momentum of partons (deep inelastic scattering)
 - 1990's Generalized Partons
 Distributions (GPDs): correlations of
 longitudinal momentum and transverse
 position (deep exclusive processes)

Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering

 GPDs appear in the DVCS amplitude through Compton Form Factors (CFF) such as:

$$\mathcal{H} = \int_{-1}^{1} H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right) dx$$

 Experimentally we measure photon leptoproduction: interference of DVCS and Bethe-Heitler (BH)

$$\sigma(ep \rightarrow ep\gamma) = |DVCS|^2 + |BH|^2 + Interference$$

3

 $e^{-}(k)$

$$\gamma^{*}(q)$$

$$x + \xi$$

$$H, E, \tilde{H}, \tilde{E}(x, \xi, t)$$

$$p(p)$$

$$t = (p - p')^{2}$$
DVCS at leading order
$$\gamma^{*}e^{-}$$

Generalized Parton Distributions

Tomography of the nucleon

$$\rho(x, \vec{r_{\perp}}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{\Delta_{\perp}} \cdot \vec{r_{\perp}}} H(x, \xi = 0, t = -\Delta_{\perp}^2)$$
Burkardt, 2003

 Δ_{\perp} transverse momentum transfer Distribution of longitudinal momentum x and transverse position $\vec{r_{\perp}}$

• Contribution of quark orbital angular momentum to the proton spin: $J = \int_{-1}^{1} x \Big[H(x,\xi,0) + E(x,\xi,0) \Big] dx$ Ji, 1997

Beam-spin asymmetry

- Extraction of GPDs from DVCS with polarized lepton beam and unpolarized target
- Photon leptoproduction beam-spin asymmetry:

$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

At leading order the asymmetry is:

$$A_{LU} \simeq \frac{A\sin(\phi_{trento})}{1 + B\cos(\phi_{trento})} \qquad A = \frac{s_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}} \qquad B = \frac{\kappa c_1^{BH} + c_1^{\mathcal{I}}}{\kappa c_0^{BH} + c_0^{\mathcal{I}}}$$

e

 κ known function of kinematical variables

$$c_1^{\mathcal{I}}, \ c_0^{\mathcal{I}}, \ s_1^{\mathcal{I}}$$
 combinations of CFF

$$s_1^{\mathcal{I}} \propto Im(F_1\mathcal{H} + \xi(F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E})$$

 F_1, F_2 form factors

e'

p'

 γ'

RH .

 ϕ_{trento}

 τ

CLAS12 installation complete

Jefferson Lab

 CEBAF upgraded to deliver longitudinally polarized 12GeV electron beam

CLAS12 data taking started in 2018

- 10.6 GeV electron beam
- Unpolarized liquid hydrogen target

CLAS12

Forward Detector (FD):

- TORUS magnet
- Drift chamber system
- HT Cherenkov Counter
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter
- RICH detector
- Forward Tagger

Central Detector (CD):

- SOLENOID magnet
- Barrel Silicon Tracker
- Micromegas
- Central Time-of-Flight
- Central Neutron detector

DVCS event in CLAS12

Typical DVCS event:

- Electron in the forward detector (torus, DC, ToF, Cherenkov, Calorimeter)
- Photon in the forward tagger (calorimeter)
- Proton in the central detector (solenoid, Silicon, Micromegas and ToF)

Event Reconstruction and kinematic

Exclusivity

Selection of exclusive DVCS events:

- Missing mass $ep \rightarrow ep\gamma X$
- Missing energy $ep \rightarrow ep\gamma X$
- Cone angle: angle between measured and computed photon (using proton and electron)
- Main background: $ep \rightarrow ep\pi^0 \rightarrow ep\gamma\gamma$

Contamination from π^0

First look at beam-spin asymmetry

Preliminary asymmetry:

$$A_{LU} = \frac{1}{P} \frac{N^+(\phi_{trento}) - N^-(\phi_{trento})}{N^+(\phi_{trento}) + N^-(\phi_{trento})}$$

P polarization N^+ / N^- number of events with helicity + / -

- Residual background not subtracted
- Only statistical errors
- Integrated over all kinematic domain

Summary and outlook

guillaum@jlab.org

- Only 2% of expected statistic shown here
- Tuning of calibration and reconstruction for optimized performances
- Analysis in progress, on π⁰ contamination, simulation, exclusivity cuts ...

