

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Overview and Introduction

- Physics motivation
- Analysis procedure
- Multidimensional binning
- Comparison to CLAS and HERMES

- ➔ Data recorded with CLAS12 during spring of 2018
- ➔ Analysed data < 2 % of approved RG-A beamtime
- ➔ 10.6 GeV electron beam
- → 85 % average longit. polarization
- ➔ liquid hydrogen target

Physics Motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

2

Physics Motivation

In a simplified way, it can be expressed as:

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

where the moments $A_{UU}^{\cos\phi}$, $A_{UU}^{\cos 2\phi}$, $A_{LU}^{\sin\phi}$ are directly related to the structure functions of the cross section

Focus of this study: $A_{LU}^{\sin\phi}$

- \rightarrow Only moment which depends on the beam helicity
- → Helicity dependence arises from the asymmetric part of the leptonic tensor and its coupling to the hadronic tensor
- \rightarrow Directly correlated with the structure function $F_{LU}^{\sin\phi}$
- ➔ Provides information about the quark gluon correlations in the proton

Physics Motivation and Extraction

• BSA is a good tool to extract $A_{LU}^{\sin\phi}$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)}$$

→ Helicity independent acceptance terms cancel out in the ratio!

Past: Measurements have been performed with CLAS, HERMES and COMPASS

Advantages of CLAS12:

- → Significantly higher statistics
- \rightarrow Extended kinematic coverage (Q², P_T)

Particle ID

- **Electron ID** \rightarrow Based on the electromagnetic calorimeter and the cherenkov counters
- **Hadron ID** \rightarrow Charge corresponding to the selected hadron
 - \rightarrow Fiducial cuts on the hit position in the drift chambers
 - $\rightarrow\,$ Particle selection based on β vs $\,$ p correlation

\rightarrow Maximum likelihood particle ID

$$P(\beta) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp\left(-\frac{1}{2}\left(\frac{\beta-\mu}{\sigma}\right)^2\right)$$

- → Assign particle to species with the highest probability
- → Check if particle is within a certain confidence level
- Provides a cleaner particle ID for inclusive measurements

Event selection and kinematic cuts

<u>π⁰ selection</u>:

 $E_v > 0.6 \text{ GeV}$, all 2 γ pairs

SIDIS simulations show:

background dominated by SIDIS π^{0}

 $\rightarrow~3~\sigma$ cut around the peak positions

Kinematic cuts for all pions:

minimal electron energy: 2.0 GeV minimal pion energy: 1.5 GeV

<u>DIS cut</u>: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

Additionally: Cut on the final state hadron momentum fraction z

0.3 < z < 0.7

 \rightarrow z > 0.3 removes the "target fragmentation region"

 \rightarrow z < 0.7 removes contamination by pions from exclusive channels

Kinematic coverage for π^+ (similar for π^- and π^0)

Stefan Diehl, U Giessen + UConn

Novel Probes of the Nucleon Structure, Duke University

03/14/2019

7

Integrated beam spin asymmetry

➔ No systematics, no kinematic binning

Stefan Diehl, U Giessen + UConn

Novel Probes of the Nucleon Structure, Duke University

03/14/2019

The figures on multidimensional binning and the comparison to other experiments (slides 11 -23) are not officially approved by the collaboration yet, and therefore not available online.

Conclusion and Outlook

- CLAS12 enables the extraction of SIDIS pion BSA moments with high accuracy in an extended kinematic range
- Qualitative agreement with previous experiments
- The presented analysis is based on only close to 2 % of the approved RG-A beamtime
- 20 % of RG-A will be available in a few month
 - \rightarrow The behaviour at large Q² and P_T values will be studied
 - \rightarrow Systematic effects will be investigated

