

Neutral Pion **DIS Multiplicity** with CLAS12 Data

Giovanni Angelini (GWU), PhD candidate

Multiplicity: Brief Motivation \bigcirc

CLAS12: Detector Overview \bigcirc

Data Selection.

Preliminary analysis Multiplicity vs z

 \bigcirc

Future plans \bigcirc

Preliminary analysis Multiplicity vs PT

Semi Inclusive Deep Inelastic Scattering

SIDIS: The four-vector of the measured hadron can give us information on the proton's structure.

Giovanni Angelini

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

< 3 >

$F \propto DF \otimes FF$ **Structure Function:**

Partonic Distribution Function. Fragmentation Function

GW

Observable: Multiplicity

Multiplicity:

 $m^{h}(Q^{2}, x, \mathbf{z}, \mathbf{P}_{hT}^{2}) = \frac{d\sigma_{SIDIS}^{h}/dQ^{2} dx dz dP_{hT}^{2}}{d\sigma_{DIS}^{h}/dQ^{2} dx}$

 $m_N^h(x, z, P_{hT}^2, Q^2) = \frac{\pi F_{UU,T}(x, z, P_{hT}^2, Q^2) + \pi \varepsilon F_{UU,L}(x, Q^2)}{F_T(x, Q^2) + \varepsilon F_L(x, Q^2)}$

Assuming Gaussian distributions in \mathbf{k}_{T} and \mathbf{p}_{T}

$$m_{N}^{h}(x,z,\boldsymbol{P}_{hT}^{2}) = \frac{\pi}{\sum_{a}e_{a}^{2}f_{1}^{a}(x)} \times \sum_{a}e_{a}^{2}f_{1}^{a}(x) \underbrace{D_{1}^{a \rightarrow h}(z)}_{\boldsymbol{\pi}(z)} \underbrace{e^{-\boldsymbol{P}_{hT}^{2}/\left(z^{2}\langle \boldsymbol{k}_{\perp,a}^{2}\rangle + \langle \boldsymbol{P}_{\perp,a \rightarrow h}^{2}\rangle\right)}_{\pi\left(z^{2}\langle \boldsymbol{k}_{\perp,a}^{2}\rangle + \langle \boldsymbol{P}_{\perp,a \rightarrow h}^{2}\rangle\right)}$$
FF

Giovanni Angelini

$$(x, z, P_{hT}^2, Q^2)$$

Kinematics factors drops in the ratio. Information on the FF can be extracted from it.

 $\sigma_p^{ex} \propto 4u + d + \dots$

 $\sigma_p^{\pi 0} \propto 4u D^{u \to \pi 0} + dD^{d \to \pi 0} + \dots$

At large x (sea contribution can be neglected) the multiplicity should follow z-dependance of FF (after PT integration).

Fragmentation function for u and d quarks are the same at first approximation.

Suppression of spin-dependent fragmentation function for $\pi 0$ since Collins FF has roughly equal magnitude but opposite sign in up and down quarks.

Suppression of higher-twist contributions at larger energy fraction (important at Jlab energy where small z are contaminated by target fragmentation).

Absence of p0 production that complicates the interpretation of charged single pion data.

In exclusive production the longitudinal photon contribution is suppressed with respect the transverse photon contribution which is higher twist. This suggest that longitudinal photon contribution to SIDIS will be also suppressed

 $D^{u \to \pi 0} \approx I$

CLAS12 Detector Overview

FTOF

Giovanni Angelini

< 6 >

Forward Detector:

- Torus magnet
- Drift Chamber system
- Forward ToF System
- LT Cherenkov Counter
- HT Cherenkov Counter
- RICH
- Preshower calorimeter
- E.M. calorimeter (EC)
- Forward Tagger (FD)

Central Detector:

- -Solenoid magnet
- -Barrel Silicon Tracker
- -Central Time-of-Flight
- -Micromegas
- -Neutron detector

CLAS12 Detector Overview

Installation Completed at the end of 2017

E = 10.6 GeV

Very preliminary results based on < 1% of the data collected. The data were processed with a preliminary reconstruction algorithm. a large data sample.

In the future weeks I will extend this analysis to 10% of RUN- Group A.

- Target used: Unpolarized Liquid Hydrogen. Polarized electron beam (85% of polarization)
- $L = 10^{35} \, cm^{-2} \, s^{-1}$

- The collaboration has improved and updated these algorithms and is processing

Data Selection: Scattered Electron Cuts

FIDUCIAL CUTS:

JSA

GW

JSA

GW

Data Selection: Scattered Electron

Data vs MC Kinematics

JSA

GW

Giovanni Angelini

WASHINGTON, DC

GW

Reconstructed photons

Photon Energy > 400 MeV

GW

π0 Reconstruction in Z bins

Data divided in z bin (size 0.1) 0.2 < z ≤ 0.9

π 0 s obtained from the gaussian integral

Giovanni Angelini

<12>

Multiplicity of Neutral Pions Electroproduction

Giovanni Angelini

π0 Reconstruction in Pt bins

Efficiency w. Acceptance:

π 0s reconstructed from MC (within the cuts)

π 0s generated (4 π)

π0 Reconstruction in PT bins

JSA

GW

Giovanni Angelini

f1d Name: 2.263 а 0.313 χ²/ndf 0.757 2.272 χ² ndf 3.000 0.90 0.70 0.80

JSA

GW

Giovanni Angelini

<16>

Both the Z and PT distribution of neutral pion multiplicity look reasonable even if very preliminary data have been used for this analysis.

In the next months the analysis will be done with better quality data and higher statistics. Results will be obtained in multi dimensional bins.

By the end of this year I am planning to conclude this analysis and move to charged particles.

