Investigating the EMC effect in highly-virtual nucleons at Jefferson Lab

Florian Hauenstein, Old Dominion University 04/14/19

The EMC Effect in DIS Scattering

Quark distributions (F₂) in nucleons bound in nuclei different to distributions in free nucleons

EMC and SRC Correlation

Weinstein et al., PRL 106, 052301 (2011), Hen et al., PRC 85, 047301(2012)

Short Range Correlations

Neutron Excess [N/Z] Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

Subedi et al., Science 320, 1476 (2008)

Ŵ

OLD DOMINION

- NN pair with large relative momentum and small c.m momentum
- ~20% of nucleons in nuclei
- SRC pairs dominate nucleon momentum distribution above fermi momentum k_F
- np dominance of SRC pairs (about ~18 more likely than pp or nn)

Tagged DIS on Deuterium

- "Tag" interacting nucleon by measuring spectator
- How does the bound nucleon structure function depend on nucleon virtuality $v = p^2 m^2$
- Explaining the EMC effect

What will be measured

- Measuring cross section ratios to minimize uncertainties
- Choose kinematics with minimal FSI $\theta_{rq} > 107^{\circ}$

$$\frac{\sigma_{DIS}(x'_{\text{high}}, Q_1^2, \alpha_s)}{\sigma_{DIS}(x'_{\text{low}}, Q_2^2, \alpha_s)} \cdot \frac{\sigma_{DIS}^{\text{free}}(x_{\text{low}}, Q_2^2)}{\sigma_{DIS}^{\text{free}}(x_{\text{high}}, Q_1^2)} \cdot R_{FSI} = \frac{F_2^{\text{bound}}(x'_{\text{high}}, Q_1^2, \alpha_s)}{F_2^{\text{free}}(x_{\text{high}}, Q_1^2)}$$

measurement theory

- x' = x for moving nucleon $= Q^2/(2p \cdot q)$
- $x'_{high} > 0.45$
- no EMC effect at $0.25 \le x'_{low} \le 0.35$

DIS Recoil Tagging d(e,e'N)X - Expected Results

(D) OLD DOMINION UNIVERSITY

Hauenstein | 04/14/2019

BAND in HallB

CLAS12 and BAND

Overview of BAND

- 5 layers thick (36cm total) with veto layer (1cm thick)
- 140 scintillator bars
- Bar resolutions < 200 ps
- 3 meters upstream of target, coverage in $\theta \sim 155-176^{\circ}$
- Design neutron efficiency ~35% and momentum resolution ~1.5%
- Laser system for calibrations

BAND Construction

Installed in the Hall

Summary and Outlook

- Tagged DIS measurements to explain EMC effect
- Measurement of F2n in Hall C with LAD 2021???
- Measurement of F2p with CLAS12 plus BAND
 - Spring and fall 2019
 - Backward going neutrons clearly seen
 - Data analysis under way

Many thanks to the BAND crew Rey and Efrain

Back up slides

FSI in Tagged DIS

DEEPS showed little FSI at back angles.

BAND Experimental Conditions

- Data taking during Run Group B of CLAS12
- Approved for 180 days (90 PAC days)
- ~50% of approved beam time in spring and fall 2019
- 11 GeV electron beam
- 10³⁵ cm⁻²s⁻¹ luminosity
- Scattered e' in CLAS12

Theories

Laser System

BAND Kinematical Coverage

Tagged DIS at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND)

Hall C: SHMS/HMS + Large Angle Detector (LAD)

