2019 Fall Meeting of the APS Division of Nuclear Physics

Charged dihadron beam-spin asymmetries from CLAS12

Timothy B. Hayward for the CLAS Collaboration

Toward a full collinear description of the nucleon

• At twist-3, the nucleon is described by 6 collinear PDFs.

twist-2	f(x)	g(x)	h _l (x)
twist-3	e(x)	h _L (x)	g _T (x)

- f(x), g(x) and $g_T(x)$ are measured through DIS.
- The transversity distribution, h₁(x), is chiral-odd and so must be accessed through SIDIS where it couples to a chiral-odd fragmentation function.
- **e(x)** and h_L(x) are poorly known.
- The golden channels to access these poorly known PDFs are through the SIDIS dihadron asymmetries A_{LU} and A_{UL}.

Colinear twist 3 PDF e(x)

- Insight into largely unexplored quark-gluon correlations.
- $\int x^2 e(x) dx \rightarrow \bot$ force on \bot polarized quarks in an unpolarized nucleon, "Boer-Mulders force".
- x integral related to the marginally known scalar-charge of the nucleon and the pion-nucleon sigma term.
- BSA is sensitive to e(x) which has sizable model predictions:

BSA $ep \rightarrow e'\pi^+\pi^- + X$: Clean access to e(x)

• See e.g. Aurore Courtoy, arXiv:1405.7659

$$F_{LU}^{\sin\phi_R} = -x \frac{|\vec{R}|\sin\theta}{Q} \left[\frac{M}{M_{\pi\pi}} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_{\pi\pi}) + \frac{1}{z} f_1^q(x) \tilde{G}(z, \cos\theta, M_{\pi\pi}) \right]$$

• The PDF e(x) appears coupled to the Interference Fragmentation Function.

CLAS12 Experimental Setup

- Data taken during Fall 2018.
- 10.6 GeV, longitudinally polarized beam, H₂ target.
- Analyzed data ~3% of approved beam time.

CLAS12 kinematic reach

 The low Q² range of Jefferson Lab is ideal for extraction of twist-3 PDFs.
p(e,e')X

Plots based on 200 min. of data taking

Particle ID

- Electron
 - Electromagnetic calorimeter.
 - Cherenkov detector.
 - Vertex and fiducial cuts.
- Hadron
 - β vs p comparison between vertex timing and event start time.
 - Vertex and fiducial cuts.

Extracting A_{LU}

- Select $ep \rightarrow e'\pi^+\pi^- + X$.
- Calculate ϕ_R angle of pion pair.
- Fit to asymmetry $\frac{N^+ N^-}{N^+ + N^-} (\phi_R) \rightarrow A_{LU}^{sin\phi_R}$.
- Correct with kinematic factor and P_{beam}~86%.
- Example for 0.22 < x < 0.25:

Channel selection

- Q²>1.0 GeV²
- W>2.0 GeV
- z_i>0.1
- z<0.95
- M_{miss}>1.05 GeV
- x_F>0
- y<0.8
- p_{πi} > 1.25 GeV
- p_e > 2.00 GeV

Preliminary results on ϕ_R modulations

- A_{LU} approximately 3% asymmetries.
- Trend of increasing asymmetries in x, z and $M_{\pi\pi}$ expected.

Multidimensional binning

- Asymmetries enhanced when binned in $M_{\pi\pi}.$
- Much finer multidimensional binning coming with more statistics.

Summary

- Preliminary results of ϕ_R modulations in dipion events from the CLAS12 Fall 2018 dataset shown.
- Indications of signal consistent with previous measurement and model predictions.
- Full statistics will enable a rich multidimensional analysis.
- Possible future efforts
 - Expansion to other pion combinations ($\pi^+ \pi^0$, $\pi^- \pi^0$, etc.)
 - Same sign pairs to test the ρ-resonance model.
 - Kaon asymmetries with improved RICH detector calibrations.
 - Flavor separation when data combined with CLAS12 deuterium target experiments.

Backup Slides

Kinematic Distributions of dipion Events

• A_{LU} sensitive to PDF e(x) and FF $H_1^{\triangleleft q}(z, cos\theta, M_{\pi\pi})$

