(e,e'N) and (e,e'Np) in heavy nuclei

Or Hen for Meytal Duer (TUD)

Laboratory for Nuclear Science @

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

SRC

MEC suppressed @ high-Q², IC suppressed at $x_B > 1$.

Frankfurt, Sargsian, and Strikman PRC **56**, 1124 (1997). Colle, Cosyn, and Ryckebusch, PRC **93**, 034608 (2016).

MEC suppressed @ high-Q², IC suppressed at $x_B > 1$.

FSI suppressed in **anti-parallel** kinematics. Treated using **Glauber** approximation.

Frankfurt, Sargsian, and Strikman PRC **56**, 1124 (1997). Colle, Cosyn, and Ryckebusch, PRC **93**, 034608 (2016).

FSI: Theory Guidance

For large Q², x>1

Pair rescattering: Minimize by choosing correct kinematics

Attenuation: Glauber

Hen et al., Phys. Lett. B 722, 63 (2013)

Attenuation: Glauber

M. Duer et al., submitted (2018)

$$\vec{P}_{c.m.} = \left(\vec{P}_p - \vec{q}\right) + \vec{P}_{recoil}$$

FSI Between nucleons in the pair:

$$\vec{P}_{p} \to \vec{P}_{p} + \vec{\Delta}$$
$$\vec{P}_{recoil} \to \vec{P}_{recoil} - \vec{\Delta}$$
$$\vec{P}_{recoil} \to \vec{P}_{recoil} - \vec{\Delta}$$

 $\Rightarrow P_{c.m.}$ Invarient

Low Pair C.M. Motion

Cohen, PRL (2018).

Low Pair C.M. Motion

Proton vs. Neutron Knockout M. Duer ELECTRON INCIDENT **ELECTRON** TARGET **NUCLEUS NEUTRON** DRIFT **CHAMBERS** PROTON **CHERENKOV COUNTER** TIME OF FLIGHT **ELECTROMAGNETIC** CALORIMETER

Mean-Field: n/p = N/Z

SRC: n/p = 1

Same # of high-momentum protons and neutrons

What do the outer neutrons do?

Correlation Probability: Neutrons saturate Protons grow

Protons 'Speed-Up' In Neutron-Rich Nuclei

Protons may have an outsize influence on the properties of neutron stars and other neutron-rich objects

Protons strongly influence the behaviour of neutron stars

Astronomy Now

GIZMODO

Surprising Accelerator Finding Could Change the Way We Think About Neutron Stars

Protons may have an outsize influence on the properties of neutron stars

and other neutron-rich objects

Protons strongly influence the behaviour of neutron stars

Astronomy Now

GIZMODO

Surprising Accelerator Finding Could Change the Way We Think About Neutron Stars

Example: URCA cooling of neutron stars

 $n \rightarrow p + e^- + \overline{\nu}$; $p + e^- \rightarrow n + \nu$

$n \rightarrow p + e^- + \bar{\nu}$; $p + e^- \rightarrow n + \nu$

Symmetric Fermi-Gas

$n \rightarrow p + e^- + \bar{\nu}$; $p + e^- \rightarrow n + \nu$

Asymmetric Fermi-Gas

$n \rightarrow p + e^- + \overline{\nu}$; $p + e^- \rightarrow n + \nu$

Proton decrees visible also @ low-momentum!

Paschalis, Petri, Macchiavelli, Hen, and Piasetzky, arXiv 1812.08051 (2018)

A. Tang et al., PRL (2003);

E. Piasetzky et al., PRL (2006);

R. Shneor et al., PRL (2007)

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

Starting to describe cross-sections!

Duer, submitted (2018); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003); <u>Review:</u> Hen RMP (2017);

np dominate in all interactions!

Duer, submitted (2018); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003); <u>Review:</u> Hen RMP (2017);

Other pair properties: A – Dependence

C. Colle et al., PRC 92, 024604 (2015).

Proton Charge Radii of neutron rich nuclei

Add *neutrons* => Measure impact on *protons* => Learn about proton-neutron pairing

#Neutrons

Ab-Initio Under Predict....

Specifically under predict the measured charge radius increase from ⁴⁸Ca to ⁵²Ca

These calculations truncate SRCs by evolving the wave function but not the radius operator

R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)

SRCs not Included in the Calculations

np-SRCs of core protons & outer neutrons: pull out protons, increasing their radius?

Miller, Beck, May-Tal Beck, Piasetzky, Weinstein and Hen, arXiv: 1805.12099 (2018)

SRCs Can Account for the Difference!

Our estimation for the impact of np-SRCs: ^{49}Ca - $^{48}\text{Ca}:~\delta_{SRC}\langle r^2\rangle=0.15~\text{fm}^2$

Miller, Beck, May-Tal Beck, Piasetzky, Weinstein and Hen, arXiv: 1805.12099 (2018)

np dominate in all interactions!

Duer, submitted (2018); Duer, Nature (2018); Hen, Science (2014); Korover, PRL (2014); Subedi, Science (2008); Shneor, PRL (2007); Piasetzky, PRL (2006); Tang, PRL (2003); <u>Review:</u> Hen RMP (2017);